IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.30, NO.3, MARCH2019 601

Hardware Accelerated Semantic Declarative
Memory Systems through CUDA
and MapReduce

Mark Edmonds ™, Tanvir Atahary ", Scott Douglass, and Tarek Taha

Abstract—Declarative memory enables cognitive agents to effectively store and retrieve factual memory in real-time. Increasing the
capacity of a real-time agent’s declarative memory increases an agent’s ability to interact intelligently with its environment but requires
a scalable retrieval system. This work represents an extension of the Accelerated Declarative Memory (ADM) system, referred to as
Hardware Accelerated Declarative Memory (HADM), to execute retrievals on a GPU. HADM also presents improvements over ADM’s
CPU execution and considers critical behavior for indefinitely running declarative memories. The negative effects of a constant
maximum associative strength are considered, and mitigating solutions are proposed. HADM utilizes a GPU to process the entire
semantic network in parallel during retrievals, yielding significantly faster declarative retrievals. The resulting GPU-accelerated
retrievals show an average speedup of approximately 70 times over the previous Service Oriented Architecture Declarative Memory
(soaDM) implementation and an average speedup of approximately 5 times over ADM. HADM is the first GPU-accelerated declarative

memory system in existence.

Index Terms—Declarative memory, ACT-R, semantic networks, parallel activation calculation

1 INTRODUCTION

A cognitive architecture is a hypothesis about the struc-
tural and behavioral mechanisms underlying cogni-
tive activity. These architectures aim to enable agents to
behave intelligently in complex environments by support-
ing the same high-level functionality as that of the human
mind. Declarative memories offer a formalism for agent
queries regarding domain knowledge given constraints
and the agent’s current context. For instance, a retrieval
query might be for toys given that a dog is in the agent’s
environment. In this example, foys are the focus of the
query while dog provides a bias towards particular toys
(i.e. toys that are somehow related to dogs). In this work,
the computational model underpinning the retrieval
mechanism is designed to adhere to human performance.
This work accelerates these retrievals using a Graphics
Processing Unit (GPU).

The cognitive architecture community has been steadily
increasing focus on providing cognitive agents with access
to massive declarative memories [1], [2], [3], [4], [5], [6],

o M. Edmonds, T. Atahary, and T. Taha are with the Department of Electri-
cal and Computer Engineering, University of Dayton, Dayton, OH
45469. E-mail: {edmondsm1, ataharyt1, ttahal }J@udayton.edu.

e S. Douglass is with the Air Force Research Lab, United States Air Force,
Wright-Patterson AFB, Dayton, OH 45433.

E-mail: scott.douglass.1@us.af.mil.

Manuscript received 10 Mar. 2017; revised 12 June 2018; accepted 25 June
2018. Date of publication 23 Aug. 2018; date of current version 13 Feb. 2019.
(Corresponding author: Mark Edmonds.)

Recommended for acceptance by P. Sadayappan.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TPDS.2018.2866848

[7], [8]. The need for larger declarative memories under-
scores the expansion of the applications of cognitive
agents. Seeking to extend the practicality of existing
declarative retrieval mechanisms, researchers are develop-
ing algorithms and computational frameworks that sup-
port massive stores of declarative knowledge and
accelerate knowledge retrieval. Capacity and retrieval per-
formance increases emerging from these efforts have the
potential to dramatically change the modeling of human
memory and the exploitation of declarative knowledge in
agent-based software applications.

The Adaptive Control of Thought-Rational (ACT-R) is a
theory of human cognition in the form of a cognitive archi-
tecture [9]. There are many other cognitive architectures; it
is beyond the scope of this paper to review them (see [10]
for a review). In this work, we focus on accelerating the
declarative memory module of ACT-R. ACT-R’s retrieval
mechanism relies on each chunk (i.e. instance) of knowledge
computing its activation (usefulness score) using a provided
retrieval request and the current context. The retrieval
request specifies top-down attributes the retrieved chunk
must satisfy. The current context provides a bias (through a
process called spreading activation) towards chunks con-
nected to knowledge in the current context. The chunk of
knowledge with the highest activation is returned as the
result of the retrieval.

We call our retrieval system Hardware Accelerated
Declarative Memory (HADM), and it faithfully reprodu-
ces the activation-based retrieval calculus found in
ACT-R’s declarative memory module. HADM represents
a technical expansion of the Accelerated Declarative

1045-9219 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-9136-1714
https://orcid.org/0000-0001-9136-1714
https://orcid.org/0000-0001-9136-1714
https://orcid.org/0000-0001-9136-1714
https://orcid.org/0000-0001-9136-1714
https://orcid.org/0000-0002-0268-5002
https://orcid.org/0000-0002-0268-5002
https://orcid.org/0000-0002-0268-5002
https://orcid.org/0000-0002-0268-5002
https://orcid.org/0000-0002-0268-5002
mailto:
mailto:

602 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.30, NO.3, MARCH 2019

Memory (ADM) system presented in [1]. HADM is part
of an effort to increase the scale and performance of
a larger hybrid Cognitively Enhanced Complex Event
Processing (CECEP) architecture that is both cognitive
and high-performance.

The Large Scale Cognitive Modeling (LSCM) initiative
set out to develop a specification and execution framework
with which Air Force Research Lab (AFRL) cognitive scien-
tists could develop and deliver intelligent agents capable of
meeting information representation and processing scale
requirements of AFRL systems and missions. Several cur-
rent AFRL research and development efforts are investigat-
ing ways to accelerate core components of the CECEP
architecture using multi-core and GPU architectures [11].
At the start of the LSCM initiative, assessments of associa-
tive declarative memories available in cognitive architec-
tures such as ACT-R concluded that algorithms realizing
critical aspects of their associative retrieval processes were
inherently serial. The HADM system described in this paper
specifically increases the scalability of associative retrieval
by realizing it with a parallelized algorithm executing on
massively parallel hardware.

HADM expands the practicality of ACT-R’s retrieval
mechanism through the acceleration of activation calcula-
tion using the parallel computing platform CUDA.
CUDA increases the parallelization of activation calcula-
tion by leveraging the many processing cores available
on a GPU. The research effort developing HADM is pro-
ducing a comprehensive high-performance declarative
retrieval system, not just faster activation calculation.
The HADM implementation is functionally equivalent to
ACT-R’s retrieval process and offers substantial perfor-
mance gains. HADM'’s primary contribution is to further
parallelize activation calculation and knowledge retrieval
by utilizing massively parallel hardware in the form of a
GPU. HADM is the first GPU-based declarative memory
retrieval system.

The rest of this paper is organized as follows: Section 2
outlines ACT-R’s retrieval mechanism, Section 3 discusses
related work, Section 4 explains the origins and motivation
of HADM, Section 5 describes improvements HADM makes
over its predecessor, Section 6 covers the General Purpose
Computing on Graphics Processing Units (GPGPU) imple-
mentation of declarative retrieval, Section 7 examines issues
of a large, long-running declarative memory (DM), Section 8
describes the experimental setup, and Sections 9 and 10 are
the experimental results and conclusion.

2 RETRIEVALIN ACT-R

2.1 ACT-R Overview

ACT-R is a cognitive architecture that can be used to spec-
ify and execute computational process models of human
cognition [9]. The architecture consists of a central produc-
tion system and several modules. The central production
system can be thought of as the director of cognition. The
modules support knowledge processing in the central pro-
duction system by performing module-specific processes
and actions. Modules exist for vision, goal maintenance,
situation representation, audition, motor control, and dec-
larative memory [9].

TABLE 1
ACT-R’s Activation Calculation Equations
Name Equation
Activation A; = B; + Z W;S;i + €
J

Base-level learning
(base-level activation)

B; =In <Z tﬂ)
J=1

Associative strength Sji = Smax — In(fan;)

ACT-R’s declarative memory is grounded in knowledge
representations known as chunks. Chunks are composed of
key-value pairs that encapsulate a unique piece of explicit
factual knowledge. Upon successful retrieval, the chunk
with the highest computed activation is placed in a retrieval
buffer and can influence the behavior of ACT-R’s central
production system.

2.2 ACT-R’s Activation-Based Retrieval Calculus
The full ACT-R retrieval process is influenced by: (1) top-
down constraints defined in retrieval requests; and (2) con-
textual priming effects caused by chunks present in buffers
capable of spreading activation. To specify a retrieval
request in an ACT-R production, a modeler typically speci-
fies the type of chunk on which to focus the retrieval process
and may specify additional top-down constraints that must
be met by any successfully retrieved chunk. During the
retrieval process, all chunks of the specified type, or derived
from the specified type through chunk-type inheritance, are
considered initial retrieval candidates. Chunks meeting all
top-down constraints defined in retrieval requests are con-
sidered final retrieval candidates. The activations of each
chunk in the final candidate set are computed, and the
chunk with the highest activation is retrieved.

The equations governing the retrieval process in ACT-R
are listed in Table 1. Chunk activation is primarily based on
a base-level reflecting the prior usefulness of a chunk and
spreading activation reflecting the degree to which other
chunks in context are associated with a chunk. Base-level
learning influences retrieval by increasing the activation of
recently and/or frequently retrieved chunks [9]. Spreading
activation influences retrieval by allowing contextual know-
ledge to prime chunks through shared knowledge structure
and association [12].

The activation equation in Table 1 mathematically descri-
bes how chunks present in context buffers (indexed by j)
produce activation values through strengths of association
(Sji) and activation weights (I¥;) that are combined with
base-level activations to determine context-specific activa-
tions. Fan (fan;) is a numerical representation of the com-
plexity of a piece of knowledge by maintaining a count of
the number chunks connected (i.e. have relations) to this
chunk (chunk j). This spreading activation-based retrieval
process becomes a computational burden in real-time sys-
tems that produce large retrieval candidate sets. To extend
the effectiveness of ACT-R’s retrieval mathematics to larger
declarative memories, the retrieval process of a large DM
must be examined, and the activation calculation must be
accelerated to maintain real-time performance.

EDMONDS ETAL.: HARDWARE ACCELERATED SEMANTIC DECLARATIVE MEMORY SYSTEMS THROUGH CUDA AND MAPREDUCE 603

3 RELATED WORK

ACT-R’s declarative memory module follows a lineage of
factual memory storage research [9], [12], [13], [14], [15],
[16]. In the past decade, there has been a substantial push to
increase DM efficiency, largely focused on capacity and
speed [2], [3], [4], [5], [6], [7], [17], [18], [19], [20].

Persistent-DM [3] utilized a relational database as declara-
tive memory’s storage backend. Persistent-DM showed a
non-linearly increasing retrieval time as the number of
chunks increased. Salvucci [4] used a database system to
enable vast quantities of declarative knowledge using Wiki-
pedia. This database-based retrieval system handles larger
declarative memories than those analyzed in this work but
offers no analysis on the latency of retrievals. Chen et al. [18]
used a database to efficiently spread activation; however, it
is unclear if the system enforces top-down constraints.

RML1 [2] expanded on the work of Douglass et al. [3].
RML1 took advantage of Erlang’s inherent concurrency and
vastly outperformed ACT-R’s default retrieval mechanism.
Derbinsky et al. [5] outperform Douglass et al. [3] through
efficient cue components. Cue components constrain declara-
tive retrievals to two cues: (1) a positive cue indicating the
retrieved chunk must satisfy the specified relation and (2) a
negative cue indicating the retrieved chunk must not satisfy
the specified relation. Jones et al. [17] optimize spreading acti-
vation through lazy evaluation. Their approach maintains
Soar and ACT-R spreading activation behavior while making
performance gains. In our work, spreading activation is a
low-cost operation in comparison to enforcing top-down
constraints.

Grinberg et al. [21] showed a powerful approximate
computation of spreading activation. Their work exploits
the sparsity of each node’s connectivity matrix. Paths
along non-zero elements are constructed, and the number
of times a node is reached via different paths is used as a
measure of activation. This work utilized networks with
100 million nodes, however, while spreading activation is
a critical part of the ACT-R retrieval process, in practice,
candidate determination requires significantly more
computational resources [1].

There has also been an effort to endow cognitive architec-
tures with episodic memory, where the agent remembers
not only facts but also experiences [22], [23], [24], [25]. While
we believe this line of research is interesting and worth-
while, our work focuses on semantic knowledge retrieval
instead of episodic.

Frost et al. [26] introduces Street Engine, a parallel com-
puter architecture tailored to cognitive computing. Street
Engine’s production language is based on Soar [15], [25].
This architecture translates production rules directly into
parallel hardware chips called productors. While the design
and simulation of this architecture is promising, the archi-
tecture is currently unavailable in hardware. The initiative
of this work seeks to realize accelerated retrievals in physi-
cal hardware.

HOMInNE [20] integrates computational ontologies with
ACT-R in an attempt to create a more scalable knowledge
base by encoding chunk types to represent alternative con-
figurations of a chunk. This enables cognitive modelers to
utilize heterogeneous ontology sources without modifying

ACT-R’s retrieval mechanisms. While this work is related to
create extremely large declarative memories, our work
focus on accelerating the retrieval process.

Kelly et al. [19] expand the expressiveness of chunks using
holographic vectors. These vectors enable similarity metrics,
fault tolerance, and lossy compression. Holographic vectors
expand the dimensionality of factual knowledge but also fun-
damentally change the retrieval calculus of ACT-R.

Rosenbloom [27] treats a cognitive cycle as a solution
to a factor graph, where the present evidence is used
to pass messages through the graph until convergence.
Rosenbloom [7] optimizes the messages cycles per graph
cycles (MC/GQC). Their method caches messages from previ-
ous retrievals to reduce MC/GC, and they examine sending
messages in parallel. This work is an attempt to lower the
period of a cognitive cycle below 50ms, though only performs
simulated parallelism and experiments.

ACT-R’s declarative memory module is distinct from
Database Management System (DBMS) because it uses
knowledge activation to integrate: (1) context priming; (2)
retrieval recency; (3) retrieval frequency; and (4) the
structure of declarative knowledge into a memory system
that matches the information structure of its environment.
Through the increase and decay of activation across a
declarative memory, knowledge that is frequently
retrieved and used to shape action in a given context is
more reliably and rapidly retrieved in future similar con-
texts. This retrieval process is complex and non-trivial to
implement in a DBMS, though there have been attempts
to do this for both ACT-R and Soar [3], [4], [5], [18].

When a declarative memory is used to match an intelligent
agents actions to the information structure of an operational
environment, retrieval likelihoods that optimize the behavior
of the agent must be computed as quickly as possible. Under
these changed circumstances, it is unacceptable for an agent
with a computationally slow retrieval process to impede
the mission to which it is contributing: wall-clock time must
never lag behind mission execution time. Since the hard-
ware-accelerated declarative memory described in this paper
is intended for use in AFRL applications requiring retrieval
from massive knowledge repositories, the primary objective
of this work is to calculate activation in as little wall-clock
time as possible and outperform previous ACT-R implemen-
tations of declarative memory.

4 HADM BACKGROUND

HADM and its predecessor, ADM, represent a technical
extension of the RML1 retrieval system presented in [2]. To
take advantage of the large-scale declarative memory sys-
tem in RMLI1, cognitive modelers author and execute
models in a framework developed using the Erlang pro-
gramming language [11]. To broaden the usefulness of the
RML1 declarative memory system, RML1 was functionally
isolated from the broader Erlang execution framework; it
was re-implemented as a net-centric software service that
can be used in generic service-oriented architectures. Devel-
oped using Erlang, this Service Oriented Architecture
Declarative Memory (soaDM) provides a declarative mem-
ory system that can be controlled and accessed through a
published network interface.

604 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.30, NO.3, MARCH 2019

ACT-R chunks Semantic network nodes

chunk1

keyl valuel

key2 value2

key3 value3
chunk2

key4 valuel

key5 value2

Fig. 1. Comparison of ACT-R chunk representation and soaDM/ADM
semantic network representations.

4.1 Declarative Knowledge in Semantic Networks
Both soaDM and HADM represent declarative knowledge
as a semantic network. Nodes in the semantic networks
represent classes and instances. Edges in the networks
represent “object properties” that capture relationships:
(1) between classes; and (2) between classes and instan-
ces. The semantic network representation of declarative
memory enables subsections of knowledge to be tra-
versed, rather than simply iterating over the entire knowl-
edge set.

Fig. 1 illustrates the mapping between frame-based
chunks in ACT-R and semantic networks in soaDM and
HADM. Chunks are realized as nodes, and key/value pairs
are realized as directed edges. Nodes internally represent
lists of data properties that capture relationships between
the node and instances of data types (integer, float, etc.).
Every relation in the network consists of a source node, a
relation, and a destination node. For instance in Fig. 2, the
proposition pl would have two relations, one of which
would have a source node of pI, a relation of has_person,
and a destination node of hippie.

The number of relations (connections) a node possesses
represents the complexity of the knowledge the node repre-
sents. Each node maintains a fan, which represents this com-
plexity through a count of relations. In semantic networks, a
node’s fan is the number edges directed at this node. In
Fig. 1, valuel has a fan of 2 while value3 has a fan of 1.

One of the critical differences between the chunk and
semantic network representation is that values used by
chunks are expanded into full nodes. They have the same
status in the network as the chunk nodes because they are
literally other chunk nodes. This has powerful implications
when attempting to access the network based on a value in
a retrieval request.

4.2 Retrieval from Semantic Networks

A retrieval process yielding identical results as ACT-R can
be realized in semantic networks using: (1) activation sources;
and (2) node property filters. Activation sources specify: (1)
retrieval requirements; and (2) context primes.

Retrieval requirements and node property filters are
specified as tuples capturing: (1) a relation; and (2) a desti-
nation node of the relation. Together, retrieval requirements
and node property filters are equivalent to ACT-R top-down
constraints. The practical distinction between retrieval

has_person a
has_location

has_location
has_person a
has_person

has_person

has_location

has_location

has_person
has_location

Fig. 2. Semantic network representing propositions {p1, p2, p3} and their
corresponding relations in the semantic network.

requirements and node property filters is when they are
applied during the retrieval process. Retrieval requirements
are applied in a top-down fashion while node property fil-
ters are used as bottom-up filters after finding a set of poten-
tial candidates. It is worth noting that soaDM, ADM, and
HADM support ACT-R’s symbolic retrieval requirements
but do not support ACT-R’s numerical comparators, partial
matching, or blending. These features will be addressed in
future work.

Context priming sources are specified as tuples captur-
ing: (1) a relation; (2) a destination node of the relation;
(3) a number corresponding to the total activation that
that can spread from a context source; and (4) a number
corresponding to the structural complexity of a source
context. During retrieval: (1) activation is spread from
activation sources; (2) node property filters are applied to
nodes receiving activation; (3) nodes that received activa-
tion and survive property filters compute their activation;
and (4) the node with the highest activation is deter-
mined. The retrieval process ultimately returns the set of
relations (including the domain and range nodes) origi-
nating at the winning node.

Assuming identical chunk knowledge is available in
ACT-R, Table 2 shows ACT-R retrieval requests and
soaDM/ADM/HADM retrieval requirements and node
property filters that are functionally equivalent. The first
ACT-R retrieval request requires that any retrieved chunk
be of type proposition. The first soaDM/ADM/HADM
retrieval requirement spreads activation to all nodes related

TABLE 2
Retrieval Comparison Excluding Context Priming
ACT-R retrieval Retngval Node property
requirements filters
+retrieval> type
isa proposition proposition
+retrieval> type has_person
isaproposition proposition hippie
has_personhippie
+retrieval> has_person type
isaproposition hippie proposition

has_personhippie

EDMONDS ETAL.: HARDWARE ACCELERATED SEMANTIC DECLARATIVE MEMORY SYSTEMS THROUGH CUDA AND MAPREDUCE 605

TABLE 4
HADM Host Hash Table Descriptions

TABLE 3
Retrieval Comparison Including Context Priming
ACT-R retrieval Retrieval Context W;
requirements priming
sources
+retrieval> type has_person 1/3
isaproposition proposition Thippie

to proposition through the type relation. Identical activation
calculation across all proposition chunks/nodes occurs in
all retrieval systems.

The second and third retrieval requests impose an addi-
tional restriction on the retrieval process; retrieved chunks
must also possess a key/value pair “has_person hippie” or
candidate proposition nodes must be related to the hippie
node via a has_person relation (semantic network). Note
that swapping retrieval requirements and node filters in the
third comparison spread activation from the hippie node
and then requires that any candidate nodes be of type prop-
osition. This swap illustrates that: (1) retrieval in a semantic
network is not dependent on a type or ISA property; and (2)
that different activation sources can be used to affect the
same retrieval. This latter point is important; spreading acti-
vation from a low-fan node such as hippie can dramatically
alter the complexity of retrieval. If the fan of proposition is 1
million, then activation is spread to potentially 1 million
candidate nodes when proposition is used as a retrieval
requirement activation source. Alternatively, if the fan of
hippie is 25, only 25 candidate nodes are considered to
receive spreading activation.

In soaDM, the modeler explicitly requests this swap
between retrieval requirements and node property filters.
In ADM and HADM, the optimal swap is found by que-
rying the network for the node with the lowest fan. ADM
and HADM then apply the other retrieval requirements
as node property filters surrounding the node with the
lowest fan. The process for finding the lowest fan is
described in [1].

Table 3 shows how context priming sources are used in a
semantic network to reproduce context-based spreading
activation. Assuming the chunk fireman is available in one
of ACT-R’s activation source buffers, the retrieval processes
in all three systems will yield identical results.

The semantic network representation allows for more
optimized searching and traversal if activation calculation
is effectively managed across candidate nodes. The critical
challenge of achieving high-performance with the seman-
tic network approach to retrieval is realizing activation cal-
culation across all candidate nodes as quickly as possible.
Both soaDM, ADM and HADM use the MapReduce com-
puting model described in [28] to maximize the concur-
rency of candidate node activation calculation. The soaDM
declarative system utilizes lightweight threads and
Erlang’s message passing to coordinate the execution of
the retrieval process using MapReduce [9]. The ADM and
HADM declarative systems use hash tables to coordinate
retrievals. ADM executes on a CPU while HADM lever-
ages the parallel resources of a GPGPU. All three retrievals
systems execute an equivalent computing model that is
equivalent to an ACT-R retrieval.

Name Description

Master relation list
(MRL)

Enables lookup into subsections of
network based on a key/value pair,
where the name of the relation is the
first lookup, and the node with the
relation is the second lookup.
Maintains unique relation IDs and
effective fan values (see Section 5).

Name-to-Node
map (NtN)

Maps node names to node referen-
ces in the semantic network. Enables
direct access to any node in the
semantic network.

5 OPTIMIZING HOST RETRIEVALS

HADM is an expansion of ADM to utilize a GPU for retriev-
als. HADM operates in two high-level modes: on the host
(CPU, similar to ADM) and the device (GPU). Despite the
focus of HADM being device retrievals, many improvements
were made to the host implementation. This section outlines
the intention and purpose of those improvements. The dis-
cussion focuses on HADM'’s use of a thread pool to manage
and distribute parallel tasks.

5.1 Overview of Retrieval in ADM

In this subsection, we briefly outline the retrieval process
implemented in ADM [1]. HADM utilizes a similar para-
digm as ADM for host retrieval, but utilizes a thread pool to
more efficiently saturate CPU resources. ADM utilizes two
primary sources of retrieval speedups: (1) hash tables to
allow constant-time lookup into any sub-section of the
declarative network, and (2) an optimized candidate set
determination that minimizes the number of nodes checked
for top-down constraint satisfaction.

The description of ADM’s two primary hash tables are
listed in Table 4. These hash tables eliminate iteration and
search present in prior retrieval systems through constant-
time lookups. The Name-to-Node Map (NtN) enables direct
access to every context-priming source; spreading activation
is linear time in the number of nodes connected to the con-
text-priming source.

ADM'’s more substantial contribution comes from opti-
mizing candidate set determination. This optimization
relies on the final candidate set being the intersection of
all nodes fulfilling the top-down retrieval constraints.
ADM utilizes the MRL to lookup the relations and nodes
involved in each top-down retrieval constraint and selects
the node with the smallest fan (see [1] for details). From
this node, ADM applies all other top-down constraints as
node filters.

5.2 Parallel Task Execution using a Thread Pool

Thread pools provide a number of worker threads, which
complete tasks submitted to the thread pool. Because the
worker threads live for the duration of the pool, thread
pools have two critical properties: (1) they reduce the over-
head of launching parallel work units since the threads are
already instantiated and (2) allow the thread submitting
work to the pool to determine the size of each task, while

606 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.30, NO.3, MARCH 2019

Fig. 3. Example network with multiple levels of candidates.

keeping the number of worker threads proportional to the
hardware concurrency available.

When compared to launching a thread for each task, a
threadpool’s second property can drastically reduce the
burden on the scheduler by mitigating CPU contention
among threads, enabling more efficient parallelization for
declarative retrievals. For HADM, these two properties
allow the main HADM thread to simply submit tasks to the
thread pool instead of launch for each parallelizable task.
The HADM main thread also does not have to be concerned
with how many worker threads are running, or if the
worker threads are being properly saturated.

HADM'’s thread pool utilizes a work-stealing algorithm,
based on [29], with bounded lock-free task queues. Because
each queue has a fixed number of tasks, the size of each task
is a scalable value based on the number of CPU cores. This
design strikes a balance between having every worker
thread finish all submitted tasks at once and allowing the
main HADM thread to iteratively submit tasks to the thread
pool based on network topology.

The thread pool uses a future for each task to access val-
ues in HADM main thread. The use of futures not only
allows the HADM main thread to receive the return value
of the task function, but it also adds a simple synchroniza-
tion signal that the thread pool has completed all submitted
tasks. The HADM main thread simply waits for all futures
to make their return value available, which only occurs after
the thread pool has emptied all task queues.

5.2.1 Candidate Determination using a Thread Pool

ADM'’s initial parallel execution, outlined in [1], made a top-
level estimation about how to split CPU resources among a
node’s relations and subclasses if a type or subclass_of rela-
tion was specified as a top-down constraint. If a type or sub-
class_of relation was not specified, there is no estimation
needed; CPU resources can be optimally split simply by
polling the number of relations that point to the node
(referred to as the node’s in-relations).

To optimally split CPU resources when type or subclas-
s_of is specified, the total number of nodes that could
eventually be candidates is required. To illustrate the
importance of this, consider the example in Fig. 3. A circle
represents a class node, and squares represent instances

of the class node (i.e. they possess a type relation to the
circle). Connections between circles indicate the class
hierarchy of the knowledge; 0 has 1 and 2 as subclasses,
and so forth.

Suppose a retrieval request specified type 1 as the only
top-down constraint. The node 1 has three nodes connected
through an in-relation of type and has two subclasses, nodes
3 and 4, with three and one instances, respectively. Node 3
has an additional subclass, node 6, which has one instance.
All of these instances classify as an instance of 1 since they
are instances of or instances of a derived class of 1. Thus,
the candidate set is all of the shaded boxes.

To show the importance of this example, consider how
HADM could split CPU resources; from the top-level
node 3, HADM is completely unaware of the number of
instances below node 3. This number could be found by
traversing the network, however, such a solution prevents
maximizing parallelism or requires a multithreaded tra-
versal. To optimally saturate CPU resources while tra-
versing with a single thread, splitting the work must
occur after the single thread is finished traversing the
portion of the network.

A method that maximizes the saturation of all CPUs dur-
ing candidate determination is optimal. To achieve this, a
method needs to (1) start assigning tasks to workers as
quickly as possible and (2) assign tasks in such a way that
once the task queue is empty, all worker threads finish at
approximately the same time. A thread pool enables both of
these properties. The main thread can submit candidate
determination tasks as it traverses the network while
worker threads can begin executing tasks immediately. In
Fig. 3, the HADM main thread accesses node 1, and submits
tasks to the thread pool to determine the candidacy of each
instance. The thread pool generalizes the link between the
structure and size of the network and the parallel work that
must be completed.

The size of each task submitted to the thread pool is pro-
portional to the amount of hardware concurrency available.
This design decision was made while the thread pool used a
single task queue for all tasks submitted. Scaling the size of
each task reduced contention on the task queues. A typical
task size for candidate determination is anywhere between
200 and 1,000 nodes per task (in practice, a single retrieval
may require thousands of tasks to be submitted to the thread-
pool by HADM's main thread).

5.2.2 Spreading Activation and Activation Calculation
using a Thread Pool

For spreading activation, a single task is submitted to the
thread pool per context priming source. This decision
reflects the simplicity of spreading activation: visit the node
spreading activation, and distribute activation down the
appropriate relations according to effective fan. The MRL
and NtN enable all context priming sources in a maximum
of 2 hash table lookups, followed by iterating over a node’s
in-relations, and finally adding activation contributions
according to the spreading activation equation in Table 1.
See Section 5.1 for more details regarding the MRL and
NtN. In HADM, one task is submitted to the thread pool
per context priming source spreading activation.

EDMONDS ETAL.: HARDWARE ACCELERATED SEMANTIC DECLARATIVE MEMORY SYSTEMS THROUGH CUDA AND MAPREDUCE 607

HADM Main Thread |

Thread Pool

Num CPUs
o

Spread Activation Num Context Sources
Spread Activation Complete] syne

Candidate Determination \\M

Candidate Determination Complete
_ | Sync

Mn Calculation \\N

Activation Calculation Complete
Sync

Fig. 4. HADM Host Retrieval Execution. The main thread submits tasks
to the thread pool (right to left), and the thread pool sends responses in
the form of futures (left to right). Each crossed line represents the thick-
ness of the line. For the thread pool the thickness corresponds to the
number of threads running and for each task (circles), the number of
tasks submitted. M represents the total number of tasks submitted from
the HADM main thread splitting in-relations and traversing the subsec-
tion of the network described in Section 5.2.1. N represents the total
number of tasks submitted to the thread pool during activation calcula-
tion. Each Sync represents the main thread sleeping until all tasks in the
thread pool have been completed.

The multithreading model for activation calculation
remains largely the same as ADM’s implementation. Each
node that is a candidate for retrieval is placed into a task
and submitted to the thread pool for completion. Each
task submitted is the same size as the tasks submitted for
candidate determination. However, in HADM this is
achieved by submitting tasks to the thread pool, with
each task containing portions of the candidate pool to
compute. In ADM, threads were launched for each task to
the same effect. Each task reports the node with the high-
est activation calculation through a reference contained in
a future.

5.2.3 HADM'’s Host Retrieval Execution

The execution of HADM’s main thread and thread pool fol-
lows a simple model: the HADM main thread submits tasks
as it encounters work capable of being parallelized, as
described in Sections 5.2.1 and 5.2.2, and waits for the sub-
mitted work to be completed by the thread pool. HADM'’s
main thread follows the following retrieval execution, with
each task submitting appropriate tasks to the thread pool:
(1) spread activation, (2) candidate determination and (3)
activation calculation. The HADM main thread collects the
results of activation calculation, returning the node with the
highest activation to working memory. This execution cycle
between the thread pool and the HADM main thread is
shown in Fig. 4.

6 DEVICE RETRIEVAL IMPLEMENTATION

The results of the ADM solution and HADM's host execu-
tion are markedly faster than previous implementations of
declarative memory. ADM showed a 20x speedup over the
soaDM solution [1], and the soaDM vastly outperformed
traditional ACT-R (and every other retrieval system

performing the full ACT-R retrieval calculus) [1], [2]. How-
ever, these acceleration goals fall short of goals of Air Force
Research Lab (ARFL) Large Scale Cognitive Modeling
(LSCM) objectives.

HADM's device retrieval execution is vastly different
from HADM'’s host execution and ACT-R’s retrieval. Each
node in the semantic network is processed by a device
thread with every retrieval. The HADM host execution
directly accesses subsections of the semantic network,
while ACT-R iterates over the knowledge. The entire
device network is consulted in parallel with every device
retrieval.

The device retrieval process can be summarized in four
steps: (1) every node is visited by a device thread; (2) the
device thread determines if this device node is a candidate;
(3) if the node is a candidate, the device thread marks the
node as a candidate and computes activation; and (4) the
node with highest activation is returned to working mem-
ory. To prevent synchronization or network traversal on the
device, each device node requires all information required
to determine candidacy and if necessary, compute activa-
tion. This reduces the amount of synchronization at the cost
of device memory.

6.1 Motivation

Building a declarative memory system from the ground up
in C++ provided a significant speedup over previous DM
implementations. However, declarative retrievals are inher-
ently parallel; each node is independent of all other chunks
for candidate determination and activation calculation.
Spreading activation requires some communication
between nodes (the node spreading to the node to the node
receiving), but each node can compute the rest of the
retrieval entirely on its own. In the face of this parallelism,
the LSCM sought hardware architectures that could further
accelerate declarative retrievals. General Purpose Comput-
ing on Graphics Processing Units (GPGPU) allows pro-
grammers to leverage the parallel computing capabilities of
a Graphics Processing Unit, which can contain up to thou-
sands of processing cores per unit. The parallel nature of
declarative retrievals makes a GPU-based implementation
an apt approach to acceleration.

6.2 Device Representation of Declarative Memory
To maximize the performance increase from using a GPU,
each device thread operates completely independently of
other threads. The device implementation of declarative
memory can greatly leverage the host/device relationship
to minimize synchronization. The device does not need to
have a copy of the MRL, NtN, and other supporting data
structures of DM; the host can effectively manage those
structures while sending minimal information to the device
for computation. For HADM, this means the device’s
semantic network should represent a network, but should
not be a network. The processing of one device node should
not interfere with the processing of another device thread,
nor should device processes rely on traversing the network.
HADM relies on the host to process and prepare the declar-
ative memory to be loaded onto the device. HADM’s hash
tables are expanded to include the device representation of
DM and are described in Section 6.2.1.

608 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.30, NO.3, MARCH 2019

Effective Fan Value
Unique Relation ID

i/

hippie 2
has_person \
debutante 1
has_location 1
lawyer 1
type 2
subclass_of 3

bank 2

park 3

forest 1

beach 1

outdoor_event| 5

indoor_event | 8

Fig. 5. Effective fan embedded in MRL and RL entries. Unique IDs are
assigned to each relation (see Section 6.2.1).

6.2.1 ID Representation of Declarative Memory

On the device, the entire semantic network is represented
through unique IDs. Each type of information has its own
set of ID assignments, and each member of a type of infor-
mation has a unique ID. An ID representation simplifies the
structure and memory footprint of DM on the GPU. The
MRL on the host is updated with another field; each value
in the MRL is a pair between a unique ID and reference to a
Relation List (RL). Each RL entry value is a pair between
the effective fan value and a node reference, as described in
Section 7.1. The resulting MRL, shown in Fig. 5, depicts the
addition of unique relation IDs.

Each node in the network is also assigned a unique ID
representation when the node is instantiated in the net-
work. This information is contained within each node,
and can be accessed through node references in the NtN
described in [1]. With relations and node names assigned
ID representations, the device DM needs an ID represen-
tation of data properties. A hash table is created for every
key, value, and value type of a data property (for exam-
ple, “Tom”, “name”, and “string”, respectively). Using
these hash tables, the host side can quickly map to an ID
representation of every portion of a data property. These
structures enable the host to effectively map every critical
portion of the network to an ID. Tables 4 and 5 summa-
rize the hash tables in HADM.

6.2.2 Copying Nodes from Host to Device

During host retrievals, the semantic network is accessed and
traversed a number of times. Spreading activation requires vis-
iting the source node and traversing references to nodes con-
nected to the source node. If a type/subclass retrieval request
is specified, candidate determination includes traversing all
classes derived from the not specified in the retrieval request,
as described in Section 5.2.1. Because the device network does
not maintain an efficient method for network access (by
design), the device nodes need a way to determine: (1) activa-
tion contributions from context priming sources and (2) ensure
that proper type/subclass consideration is achieved when
enforcing top-down retrieval constraints.

TABLE 5
HADM Device Hash Table Descriptions
Name Description
Node ID to node Maps unique node IDs to their respec-
reference tively semantic network references.

Value to valueID Maps every data property value in the

network to a unique value ID.

Value type to Maps every data property value type in
value type ID the network to a unique value type ID.

Maps every data property key in the net-
Key to key ID work to a unique key ID.

Section 6.2 establishes that every device node should be
able to determine its candidacy and activation calculation
independently from all other device nodes. Thus, each device
node needs lists of the following information: subclass node
IDs, superclass node IDs, in-relations (each comprised of a
relation ID and a node ID), out-relations (each comprised of a
relation ID and a node ID), and data properties (each com-
prised of a value ID, value type ID, and a key ID).

Most of this device node structure is equivalent to the
host node structure, with the exception that on the host,
subclass and superclass nodes are stored through references
and the network is traversed. When creating the device
node, the host traverses the subclass and superclass nodes
and collects all appropriate node IDs. Since each device
node is aware of all of its sub and superclasses, it can inde-
pendently determine its candidacy by comparing its inter-
nal lists to the constraints specified in the retrieval request.
In effect, this removes the need to traverse the network to
determine if a particular node is a subclass of the node spec-
ified by a type/subclass relation.

The copy of host nodes to device nodes requires a trivial
intermediate conversion to a host-allocated version of the
device node. Once the appropriate unique IDs have been
copied into the device node structure on the host, the host
uses the CUDA API to transfer the host-allocated device
node onto device memory. The resulting allocation refer-
ence is inserted into a global device node table. The global
device node table is a single dimension array of device node
references. It is allocated after the initial ontology nodes
have been loaded on the host. Device threads use their
unique dimensions to determine which node in the global
device node table they should process.

Network updates require accessing the entire device net-
work with a specialized update request. This update
request updates all values in the network appropriately
(e.g. relations that need to be updated after adding a node
to the network, fan, etc.). This network update procedure is
functionally equivalent to ACT-R’s update mechanism.

6.3 Device Retrieval Execution

The device paradigm operates from the perspective of each
device thread; a device retrieval is centered on each device
thread acting as an independent worker of the retrieval.

The device retrieval process follows the following steps:
(1) convert the host retrieval request to a corresponding ID
representation and transfer the request to the device, (2)
launch enough device blocks and threads to ensure every

EDMONDS ETAL.: HARDWARE ACCELERATED SEMANTIC DECLARATIVE MEMORY SYSTEMS THROUGH CUDA AND MAPREDUCE 609

node in the device node table will determine its candidacy
and if necessary, compute activation, (3) launch a distrib-
uted argmax to filter the resulting activation calculations
down to the single node with the highest activation, (4)
transfer the winning node’s ID and retrieval computations
to the host, and finally (5) convert the node ID to a node in
the host network, update its activation calculation informa-
tion, and return it to working memory.

6.3.1 ID representation of Retrieval Requests

The host’s version of the retrieval request must be con-
verted into an equivalent ID representation for device
retrievals. The hash tables outlined in Table 5 are used to
facilitate the conversion from strings to IDs. The MRL
provides conversion from a relation to a relation ID. The
NtN provides a node name to node ID conversion. The
value to value ID, value type to value type ID, and the
key to key ID provide converting data property filters to
their corresponding ID equivalent. Once the string-based
host retrieval request has been converted to its unique ID
equivalent, the host-allocated device retrieval request is
copied to device memory.

6.3.2 Device Candidate Determination and Activation
Calculation

From the host, a retrieval kernel is launched with the cor-
responding device retrieval request. The dimensions of
the kernel depend on the number of used portions within
the device node table. For device retrievals, each block is
launched with the maximum number of threads per block
(maxThreadsPerBlock). The number of blocks needed for a
retrieval is simply the number of nodes used in the device
node table divided by maxThreadsPerBlock (only one grid
is used for each retrieval). From here, the remaining
algorithm is described from the perspective of a single
device thread. Each device thread proceeds as shown in

Algorithm 1.
Algorithm 1 oversimplifies the details of the retrieval

process by indicating where the retrieval process follows
ACT-R behavior. While these portions are lightly described
here, more detailed explanations of ACT-R retrieval can be
found in [1], [2], [9]. The device retrieval description is more
concise than the host counterpart. The device retrieval
checks each node for candidacy, rather than attempting to
optimally access a subsection of the network and traversing
the network appropriately. After launching the kernel on
the device, the host waits for the device to signal that all
blocks and threads have finished the initial phase of
retrieval before proceeding (i.e. all device nodes have deter-
mined their candidacy and computed activation).

6.3.3 Retrieval Reduction

At this point in the device retrieval execution, all candi-
date nodes have computed activation. However, the device
must locate the node with the highest activation, nor is
there a trivial way to find it. HADM follows a distributed
argmax reduction scheme. Once the distributed argmax
finds the node with the highest activation, the device trans-
fers the retrieval results back to the host, and the host uses
the node ID to node reference hash table to look up the
winning node on the host. The host then appropriately

updates the information in the winning node and returns
the winning node to working memory.

Algorithm 1. Single Device Node Candidate Determina-
tion and Activation Calculation

1: procedure EXECUTEDEVICERETRIEVAL(retrieval Request,
device NodeTable)

idx «— blockDim x blockldx + threadldz
3: if idz > size of device NodeTuable then return
>verify idx validity
>access the node to
process

N

4: node — device NodeTable[idx]

5: DETERMINECANDIDACY(node, retrieval Request)
6: if node is not a candidate then return
7: CALCULATEACTIVATION(node, retrieval Request)
8: procedure DETERMINECANDIDACY(node, retrieval Request)
9: candidate «— true >assume node is a candidate,
prove node is not
10: for all constraint in retrieval Request do
11: if constraint’s relation ID is type/ subclass and
constraint’s node ID is not in node’s superclass
list then
12: candidate — false
13: else if constraint is a data property filter and node
does not posses the IDs as a property then
14: candidate — false
15: else if constraint’s relation ID and node ID are not
in node’s out Relations then
16: candidate — false
17: procedure CALCULATEACTIVATION(node, retrieval Request)
18: for all contextSource in retrieval Request do
19: for all out Rel in node’s out Relations do
20: if out Rel’s nodel D matches contextSource’s node
1D then
21: contribute to node’s activation
>follows ACT-R spreading activation
22: compute node’s activation >follows ACT-R’s

retrieval calculus

6.3.4 Device Retrieval as MapReduce

The device retrieval execution still follows the basic tenants
of a MapReduce-based retrieval, presented in [28]. The
degree of parallelism is significantly higher than previous
MapReduce-based declarative retrievals [1], [2]. The initial
device kernel launch acts as a mapper, mapping each work
unit (candidate determination and activation calculation) to
a single device thread. The following two kernel launches
act as reducers, reducing the results of the retrieval down to
a single winning node.

7 LARGE DECLARATIVE MEMORY ISSUES

This section seeks to outline significant issues that arise
when using large declarative memories. These findings
resulted from the increased scale enabled by HADM.

With the exception of a few applications and research,
declarative memories are traditionally small and do not
run for extended periods of time. Several studies [1], [2], [3],
[4], [11] describe attempts to utilize large declarative me-
mories. Large declarative memories have unique and poten-
tially problematic implications; specifically, the Associative

610 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.30, NO.3, MARCH 2019

Strength equation in Table 1 can potentially render spread-
ing activation detrimental to the retrieval process. A nega-
tive spreading activation contribution undermines the
integrity of ACT-R’s basis from human performance data,
leading to behavior that is inconsistent with prior psycho-
logical data.

Fan is a numerical representation of the overall com-
plexity of a piece of knowledge in the semantic network.
This value is permitted to increase as new knowledge is
added to DM (intuitively, new knowledge increases the
complexity of related knowledge). As a DM grows, the
value of fan for each affected chunk is adjusted appropri-
ately to reflect the increased complexity. If the memory is
allowed to grow unchecked, receiving spreading activa-
tion may result in a negative contribution to the overall
activation of the chunk, putting a chunk related to the
current context at a computational disadvantage for
retrieval. This is the opposite behavior intended when
activation spreads throughout the network. This occurs
when In(fan;) becomes larger than Sy, yielding in a neg-
ative S;; (see equations in Table 1). Because a declarative
memory is allowed to add knowledge during runtime, it
is feasible that a fan; becomes larger than the global S.
ACT-R was designed with relatively small, short behavior
models in mind with S,,,, around 1.5 [9].

Researchers have been able to curtail this problem simply
by increasing the Sp.x according to the size of DM. This
requires tweaking declarative parameters for every ontol-
ogy source. Some modelers are forced to set Sy« as high as
20 [4]. While effective for the short term, this solution is not
sustainable or scalable. This paper seeks to introduce and
discuss ideas to prevent negative spreading activation
contributions.

7.1 Mitigating Negative Spreading Activation
Contributions through Effective Fan

soaDM and HADM utilize a previously unreported feature,
referred to as effective fan. Effective fan allows modelers to
specify a key/value pair to spread activation, rather than a
traditional sole value. This type of spreading activation is
shown in Table 2 with has_person fireman. With both a key and
a value specified, spreading activation only passes activation
to nodes connected to fireman through the las_person relation.

The fan; of the resulting activation calculation is the
number of nodes connected to fireman through the has_
person relation. Thus, the term effective fan refers to the
number of nodes that had activation spread to it from this
context priming source. Traditional ACT-R behavior is
achieved by sending a ' as the key in the key/value pair,
triggering activation to spread to all nodes connected to the
value in the key/value pair.

At first glance, this introduces a large burden in
HADM'’s optimized retrieval starting point. HADM iter-
ates over all retrieval constraints, polling to find the node
with lowest fan [1]. This is a cheap operation; it simply
requires two hash lookups in the MRL and querying an
array’s size (the fan of the node). However, for effective
fan, the overall fan is not a reliable indication of the
smallest subset of potential retrieval candidates. More-
over, counting the effective fan during each retrieval is
not computationally efficient and in practice drastically

hinders the performance of retrievals (and in some cases,
doubling overall retrieval time).

To prevent HADM from counting the effective fan dur-
ing each retrieval, the effective fan is added and maintained
in the MRL. The MRL is a hash table with every relation
present in the entire semantic network as the key, and a ref-
erence to a RL is the value, as described in [1]. Each RL is
another hash table. The key to each RL is the node name
that receives the relation of the MRL (that is, the node which
has the head of the directed edge pointing to it), and the
value of each RL is a reference to the actual node. This rela-
tionship is visually shown in Fig. 5.

Fig. 5 also shows the additional structure added for effec-
tive fan usage. Each RL value becomes a pair, with the first
value of the pair is the effective fan of this relation at the RL
node (how many nodes have the MRL relation pointing to
the node of the RL entry). Maintaining each effective fan is
trivial; for each relation an incoming node possesses,
HADM maintains the MRL and each RL by attempting to
find each relation in the MRL, then each specified node in
the corresponding RL. If HADM finds both already exist,
increment the value of effective fan. If the relation or the
proper RL entry does not exist, it creates the missing section
and initializes effective fan to 1.

Effective fan is useful for two reasons: (1) it gives model-
ers a method to further specify retrieval influences and (2)
often mitigates the likelihood of a node receiving a negative
spreading activation contribution (In(fan;) becoming larger
than Sp.y). It is worth noting that the outcomes of utilizing
effective fan over a traditional fan have not been verified
against human performance data. Effective fan reduces
the likelihood of a node receiving a negative spreading acti-
vation contribution simply by reducing the value of fan;
used in the associative strength equation of Table 1.

However, there is no guarantee that the value of a partic-
ular node’s effective fan and fan are different (exactly the
case when a node only has one relation pointing towards
it). While effective fan could enable a lower overall Sy«
value, it still does not guarantee that a node cannot receive
a negative spreading activation calculation contribution.
The network could still grow beyond the value of S,,.x, or a
modeler could still use the traditional ACT-R behavior in a
DM intended to run using solely effective fan.

7.2 Eliminating Negative Spreading Activation
Contributions through a Dynamic Max
Associative Strength

This paper seeks to introduce a new perspective of Spax.

While untested against human performance data, this idea

is intended to spark a conversation and research along this

direction. First, note the intention behind S,,,y; the following
observations summarize the properties of Syax:

1) Smax should higher than the largest value of In(fan;)
in the entire semantic network.

2) Suax should not be high enough over the largest
value of In(fan;) to diminish the effects of base-level
activation.

The first property indicates why a constant Sy, will lead

to negative spreading activation contributions if a declara-
tive memory is allowed to grow indefinitely. The second

EDMONDS ETAL.: HARDWARE ACCELERATED SEMANTIC DECLARATIVE MEMORY SYSTEMS THROUGH CUDA AND MAPREDUCE 611

TABLE 6
Ontology Sources and Retrievals for Testing

Ontology source Nodes computing activation Retrieval requirements Context priming sources w N

Fan effect 15 type event has_persorll hippie 1 3
has_location park
x taxing

Moby II (1 in 3) 145,073 type synonym_relation ko demanding 1 4
fx straining

. . word fair

Moby II (1 in 2) 318,435 type synonym_relation , 1 3
synonym considerate
word mazy

Moby II (1 in 1) 1,281,763 type synonym_relation synonym whimsical 1 4
word flighty
word mazy

Moby II (full) 2,520,245 type synonym_relation synonym whimsical 1 4
word flighty

property underscores why naively and endlessly increasing
Smax With a growing DM changes the behavior of retrievals
over the entire life of an agent.

To create a scalable and sustainable S,,.,, we introduce
the concept of a variable Syax. This variable Sp.x would
always remain higher than the largest In(fan;) in the net-
work, eliminating the possibility of a negative spreading
activation contributions. To address the second observation,
we propose a variable Sy, that is either: (1) a constant value
higher than In(fan;) or (2) higher than In(fan;) by a function
of the complexity/size of the network. The constant value
approach would not diminish the effects of base-level acti-
vation but would yield different effects from base-level acti-
vation as In(fan;) grows (i.e. the effect of the constant value
decreases as In(fan;) grows).

The discussion of effective fan and a variable S, is
not the purpose of this research. However, negative
spreading activation contributions threaten the integrity
of ACT-R’s governing equations as a DM grows indefi-
nitely. Given the importance of this issue for large, scal-
able declarative memories, the discussion here is meant
to spark a conversation among the cognitive modeling
community to address these issues and verify their valid-
ity against human performance data. Naive changes the
behavior of Sy« may result in models that are inconsis-
tent with prior psychological data.

8 EXPERIMENTAL SETUP

The principal ontology for testing HADM is the Moby II
thesaurus, which is also used in [1], [2]. The Moby II

TABLE 7

Average Retrieval Times (in ms) over 180 Retrievals
Retrieval Fan MobyIl MobyIl Moby I Moby II
system effect (1in3) (1in2) (1in1) (full)
soaDM 6.800 287.734 593.127 2655.831
HADM 1.751 23.953 41.987 143.563 247.022
(host)
HADM 400 3608 6480 27321 53309
(device)

thesaurus contains 30 thousand root words with 2.5 mil-
lion synonym relations. The fan effect ontology from
ACT-R is used to compare the performance with a small
number of nodes. Table 6 shows the various ontology
sources and the retrievals executed with the particular
ontology. The Moby II (1 in 1) contains every synonym
without spaces and the Moby II (full) contains every syn-
onym. Note that when the context priming source
includes a key in the key-value pair, effective fan is uti-
lized. When " is used as the key, traditional ACT-R
spreading activation behavior occurs.

The retrievals executed in Table 6 were chosen to maximize
the number of nodes computing activation. These queries
specify a single top-down constraint to maximize the percent-
age of the network computing activation; i.e. they enforce a
stress-test of the system in a worst-case scenario where the
entire semantic network must compute activation.

8.1 Hardware and Software Details

The hardware configuration contained two Intel Xeon CPU
E5-2630 CPUs. Each CPU has 6 cores with support for 12
threads at a frequency of 2.3 GHz. An NVIDIA Tesla K20
was used as the GPU for HADM's device retrieval. The test-
ing machine ran CentOS 6.7.

9 RESULTS

Each retrieval in Table 6 was run 180 times and the aver-
age results are shown below in Table 7. HADM (host indi-
cates a retrieval using only the host implementation of
DM, while HADM (device) indicates a retrieval run using
the device implementation of DM. The Moby II (full) ontol-
ogy was not loaded into soaDM due to soaDM'’s perfor-
mance with an ontology half the size and the linear
performance of soaDM.

Figs. 6 and 7 show a graphical representation of the
results in Table 7. Fig. 6 shows the performance comparison
between the soaDM, HADM (host), and HADM (device)
retrieval systems.

Table 7, Figs. 6 and 7 show the expected linear perfor-
mance of each retrieval system. The HADM device retrieval
proves to be the most performant retrieval system in
every retrieval test. This is somewhat surprising; there is

612 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.30, NO.3, MARCH 2019
TABLE 8
Average Speedup between Retrieval Systems
Fan Moby II Moby II Moby II Moby II Average
effect (1in 3) (1in 2) (1in 1) (full) speedup
HADM (host) vs. soaDM 3.9 12.0 141 18.5 12.1
HADM (device) vs. soaDM 13.8 79.8 91.5 97.2 70.6
HADM (device) vs. HADM (host) 3.6 6.6 6.5 53 4.6 53

nontrivial overhead of launching kernels and transferring
data between the host and device. Edmonds et al. [1] indi-
cated the final HADM system would optimally switch
between a single-threaded host, multi-threaded host, and
device implementations of DM because of this overhead
consideration. However, given these results, the device will
always be used when available.

The exact performance comparisons are shown in Table 8.
Each entry in Table 8 represents the relative performance of
one retrieval to another for each ontology source. For exam-
ple, the first row (HADM (host) versus soaDM) shows the
amount of retrieval time decrease the HADM host

3000

— R2=10.9993
£ 2500
'—g @ soaDM
o
£ 2000
2
S ® HADM
— 1500 (host)
z 4 HADM
5 (device)
£ 1000
g
5]
2 500
< R2=0.9952

R2=0.9998

0 500 1000 1500 2000 2500
Number of nodes computing activation (thousands)

3000

Fig. 6. soaDM, HADM (host), and HADM (device) performance compari-
son. We fit a linear model for each trend and all implementations have a
very high R? value.

1

o o o o
o> N o ©
T T T T

Proportion
o
(9]

04} 1

03r E

ozl [ICleanup |
’ [Activation Calc.

o1k [Candidate Det. i

[Spread Activation

Fan Effect Moby Il 1in3 Moby Il 1in2 Moby Il 1in1 Moby Il full

Fig. 8. HADM (host) profiling results. Shows the proportion of time spent
in each sub-task of the retrieval process against each retrieval ontology
using retrievals in Table 6.

implementation achieves over the soaDM implementation
of DM. The final column of Table 8 shows the overall aver-
age increase between systems.

9.1 Profiling Analysis

Here, we present an analysis of the performance of
HADM'’s host and device execution. Fig. 8 shows the pro-
portion of time spent at each step of HADM'’s host execution
(see Fig. 4 for algorithmic details). Fig. 9 shows the same
plot for HADM'’s device execution (see Section 6 for algo-
rithmic details). All proportions are averaged over 60
retrievals using the retrieval requests shown in Table 6.

300

I
G
=3

R?=0.9952

[N
=3
=

®HADM
(host)

150

AHADM
(device)

R2=0.9998

Average time over 180 retrievals (ms)

0 500
Number of nodes computing activation (thousands)

1000 1500 2000 2500 3000

Fig. 7. HADM (host) and HADM (device) performance comparison. We
fit the same linear model and see highly-linear performance for both
the host and the device.

o
o
T

Proportion
o
(6]

0.4
0.3
02l [JFinal Reduction
) [Initial Reduction
01t [Candidate + Activation

[Copy Time

Fan Effect Moby Il 1in3 Moby Il 1in2 Moby II 1in1

Moby Il full

Fig. 9. HADM (device) profiling results. Shows the proportion of time
spent in each sub-task of the retrieval process against each retrieval
ontology using retrievals in Table 6.

EDMONDS ETAL.: HARDWARE ACCELERATED SEMANTIC DECLARATIVE MEMORY SYSTEMS THROUGH CUDA AND MAPREDUCE 613

Due to the Fan Effect ontologies’ small size (only 15
nodes compute activation), the overhead of the system cor-
responds to a significant portion of the wall-clock time for
both the host and the device executions. For the host, this
overhead corresponds to submitting tasks to the thread
pool and waiting for values from the thread pool to become
available to the HADM main thread (i.e. futures). For the
device implementation, the principle overhead lies kernel
setup and host-device copy operations. These overhead
operations are responsible for the slightly non-linear behav-
ior shown for smaller ontologies in Fig. 7.

For both the host and device, the performance of the
system stabilizes as the network size grows. For both sys-
tems, candidate determination and activation calculations
require the most time. Candidate determination requires
O(nk) time a serial execution, where n represents the num-
ber of nodes connected to the node with the smallest fan
(see Section 5.1) and k represents the number of top-down
retrieval constraints. Parallelization efforts (e.g. HADM's
host and device implementations) reduce this complexity
by a factor of m, where m represents the degree of hard-
ware parallelization available. It is worth noting that satu-
ration of device nodes is non-uniform during candidate
determination. Saturation is dependent upon retrieval can-
didates, which cannot be predicted prior to receiving a
retrieval request.

10 CONCLUSION

HADM is the first GPU-based implementation of declara-
tive memory. It marks another contribution towards creat-
ing a hardware accelerated cognitive architecture within the
LSCM initiative at AFRL. This paper has a simple conclu-
sion: declarative memory’s inherently parallel activation
calculus drastically benefits from leveraging parallel hard-
ware. HADM represents a complete and extremely parallel
declarative retrieval system built from the ground-up.

Declarative memory has never been given such perfor-
mance considerations, and the results show a highly capa-
ble declarative memory system is achievable and practical.
soaDM was the fastest implementation of declarative
memory to date before ADM’s creation [1], [2], and now
HADM supersedes ADM. The contributions of this work
are summarized as: (1) an analysis of fan for large declara-
tive memories and a proposal for potential solutions; (2) an
improvement of host execution on a declarative using a
thread pool; and (3) the first ever-implementation of ACT-R
declarative retrievals on parallel hardware. The results
show parallel hardware drastically accelerates declarative
retrievals.

10.1 Future Work

The work presented here currently does not support a
multi-GPU device retrieval. A multi-GPU implementation
would enable larger ontology sources which extended
beyond the available memory in a single GPGPU. Future
work includes exploring other parallel or distributed com-
puting platforms, such as OpenMPI. Additionally, HADM
should be extended to support ACT-R’s numeric retrieval
requirements, partial matching, and blending.

Future work should also include a careful analysis and
experimentation regarding the methods to mitigate or
remove the disastrous effects of a negative spreading activa-
tion calculation when a declarative memory is allowed to
grow indefinitely. The implications of effective fan or a vari-
able S,.x parameter must be analyzed by the cognitive
modeling community. These ideas presented here are
intended to spark a conversation among the cognitive
modeling community about how declarative memory can
guarantee positive spreading activation contributions with
large, long-running DMs.

Other recent hardware-accelerated cognitive architec-
tures include accelerating the knowledge mining of a cogni-
tive domain ontology, presented in [11]. Combining these
systems and implementing other hardware accelerated
modules of the CECEP architecture would represent a cog-
nitive architecture capable of supporting agents which uti-
lize massive stores of knowledge.

ACKNOWLEDGMENTS

Described research was partially supported by the Air Force
Office of Sponsored Research (AFOSR) Repperger intern-
ship program and the Department of Energy Oak Ridge
Institute for Science & Education (ORISE) program.

REFERENCES

[1] M. Edmonds, T. Atahary, T. Taha, and S. A. Douglass, “High per-
formance declarative memory systems through MapReduce,” in
Proc. 16th IEEE/ACIS Int. Conf. Softw. Eng. Artif. Intell. Netw. Paral-
lel/Distrib. Comput., 2015, pp. 1-8.

[2] S. A. Douglass and C. W. Myers, “Concurrent knowledge activa-
tion calculation in large declarative memories,” in Proc. 10th Int.
Conf. Cognitive Model., 2010, pp. 55-60.

[3] S. Douglass, J. Ball, and S. Rodgers, “Large declarative memo-
ries in ACT-R,” in Proc. 9th Int. Conf. Cognitive Model., 2009,
Art. 234.

[4] D. D. Salvucci, “Endowing a cognitive architecture with world
knowledge,” in Proc. 36th Annu. Meeting Cognitive Sci. Soc., 2014,
pp. 1353-1358.

[5] N. Derbinsky, J. E. Laird, and B. Smith, “Towards efficiently sup-
porting large symbolic declarative memories,” in Proc. 10th Int.
Conf. Cognitive Model., 2010, pp. 49-54.

[6] N. Derbinsky and J. E. Laird, “A functional analysis of historical
memory retrieval bias in the word sense disambiguation task,”
Ann Arbor, vol. 1001, pp. 48 109-42 121, 2011.

[7] P.S.Rosenbloom, “Towards a 50 msec cognitive cycle in a graphi-
cal architecture,” in Proc. 11th Int. Conf. Cognitive Model., 2012,
pp- 305-310.

[8] P.S. Rosenbloom, A. Demski, and V. Ustun, “Efficient message
computation in Sigma’s graphical architecture,” Biologically Inspi-
red Cognitive Architectures, vol. 11, pp. 1-9, 2015.

[9]1]. R. Anderson, D. Bothell, M. D. Byrne, S. Douglass, C. Lebiere,
and Y. Qin, “An integrated theory of the mind,” Psychological Rev.,
vol. 111, no. 4, 2004, Art. no. 1036.

[10] P. Langley, J. E. Laird, and S. Rogers, “Cognitive architectures:
Research issues and challenges,” Cognitive Syst. Res., vol. 10, no. 2,
pp- 141-160, 2009.

[11] T. Atahary, T. M. Taha, and S. Douglass, “Hardware accelerated
cognitively enhanced complex event processing architecture,” in
Proc. 14th ACIS Int. Conf. Softw. Eng. Artif. Intell. Netw. Parallel/Dis-
trib. Comput., 2013, pp. 283-288.

[12] J. R. Anderson, “A spreading activation theory of memory,”
J. Verbal Learning Verbal Behavior, vol. 22, no. 3, pp. 261-295, 1983.

[13] J. R. Anderson, Language, Memory, and Thought, London, UK.
Psychology Press, 1976.

[14] J. R. Anderson, The Architecture of Cognition. London, UK.
Psychology Press, 1983.

[15] J. E. Laird, The Soar Cognitive Architecture. Cambridge, MA, USA:
MIT Press, 2012.

614

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.30, NO.3, MARCH 2019

D. D. Salvucci and F. J. Lee, “Simple cognitive modeling in a com-
plex cognitive architecture,” in Proc. SIGCHI Conf. Human Factors
Comput. Syst., 2003, pp. 265-272.

S.]J. Jones, A. R. Wandzel, and J. E. Laird, “Efficient computation
of spreading activation using lazy evaluation,” in Proc. 14th Int.
Conf. Cognitive Model., 2016, pp. 182-187.

Y. Chen, M. Petrovic, and M. H. Clark, “SemMemDB: In-database
knowledge activation,” Proc. 27th Int. Florida Artif. Intell. Res. Soc.
Conf., 2014, pp. 18-23.

M. A. Kelly, K. Kwok, and R. L. West, “Holographic declarative
memory and the fan effect: A test case for a new memory module
for ACT-R,” Can.]. Exp. Psychology, vol. 69, pp. 365-365, 2015.

A. Oltramari and C. Lebiere, “Extending cognitive architectures
with semantic resources,” in Proc. Int. Conf. Artif. Gen. Intell., 2011,
pp. 222-231.

M. Grinberg, V. Haltakov, and H. Stefanov, “Approximate spread-
ing activation for efficient knowledge retrieval from large data-
sets,” in Proc. 20th Italian Workshop Neural Nets., 2011, Art. no. 326.
A. Nuxoll and J. E. Laird, “A cognitive model of episodic memory
integrated with a general cognitive architecture,” in Proc. 4th Int.
Conf. Cognitive Model., 2004, pp. 220-225.

A. M. Nuxoll and J. E. Laird, “Enhancing intelligent agents with
episodic memory,” Cognitive Syst. Res., vol. 17, pp. 34-48, 2012.

F. Li, J. Frost, and B. J. Phillips, “An episodic memory retrieval
algorithm for the soar cognitive architecture,” in Proc. Australasian
Joint Conf. Artif. Intell., 2015, pp. 343-355.

J. E. Laird, “Extending the Soar cognitive architecture,” in Proc. 1st
AGI Conf. Artif. Gen. Intell., 2008, vol. 171, pp. 224-235.

J. Frost, M. W. Numan, M. Liebelt, and B. J. Phillips, “A new com-
puter for cognitive computing,” in Proc. IEEE 14th Int. Conf. Cogni-
tive Informat. Cognitive Comput., 2015, pp. 33-38.

P. S. Rosenbloom, “Combining procedural and declarative knowl-
edge in a graphical architecture,” in Proc. 10th Int. Conf. Cognitive
Model., 2010, pp. 205-210.

J. Dean and S. Ghemawat, “MapReduce: Simplified data processing
on large clusters,” Commun. ACM, vol. 51,no. 1, pp. 107-113, 2008.
R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded
computations by work stealing,” J. ACM, vol. 46, no. 5, pp. 720-
748, 1999.

Mark Edmonds received the BS degree from the
University of Dayton, and the MS degree from the
UCLA. He is working toward the PhD degree at
the University of California, Los Angeles. His spe-
cializations are in artificial intelligence, parallel
computing, causal learning, and robotics. He has
worked on a wide range of projects from cognitive
architectures, learning from demonstration, cau-
sality, and reinforcement learning.

Tanvir Atahary received the BS and MS degrees
from the University of Dhaka, Bangladesh, in
2006 and 2008, respectively, and the PhD degree
from the University of Dayton, in 2016. Before
starting his PhD, he worked as full time faculty
with the University of Liberal Arts (ULAB),
Bangladesh from 2008 to 2011. He has been
closely working with Wright Patterson Air Force
Base (WPAFB) from his 1st year of doctoral study
and spent consecutive five summers at WPAFB.
After completing his PhD, he joined the University
of Dayton as a Research Engineer and WPAFB a full time contractor. His
research interests include high performance computing and cognitive
computing architectures.

Scott A. Douglass received the PhD degree
in cognitive psychology from Carnegie Mellon
University, in 2007. He is a senior cognitive scien-
tist with the 711/HPW Supervisory Control and
Cognition Branch (RHCI), US Air Force Research
Lab, Wright-Patterson Air Force Base, Ohio.
Working with John R. Anderson at CMU, he
acquired expertise in cognitive architectures
and the modeling and simulation of complex
situated cognitive processes. His research inter-
ests include cognitive computing, artificial intelli-
gence, knowledge engineering, multi-formalism modeling, answer-set
programming, and complex event processing.

Tarek Taha received the BSEE, MSEE, and PhD
degrees in electrical engineering from the Georgia
Institute of Technology. He is a professor of Electri-
cal and Computer Engineering. His specializations
are in high performance computing, neuromorphic
computing, and artificial intelligence systems. He
works closely with the Air Force Research Lab,
the National Security Agency. He has several
projects on the topics of neuromorphic processors,
including the development of autonomous agents
for these platforms, deep learning, neuromorphic
architectures for cybersecurity, and memristor fabrication and circuit
design. He has spent several summers at the NSA and AFRL. He is a recip-
ient of the NSF CAREER Award.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

