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Artificial agents expected to operate alongside humans in daily life will be expected to handle

novel circumstances and explain their behavior to humans. In this dissertation, we examine

these two concepts from the perspective of generalization and explanation. Generalization

relies on having a learning algorithm capable of performing well in unseen circumstances and

updating the model to handle the novel circumstance. In practice, learning algorithms must

be equipped with mechanisms that enable generalization. Here, we examine the generaliza-

tion question from multiple perspectives, namely imitation learning and causal learning. We

show that generalization performance benefits from understanding abstract high-level task

structure and low-level perceptual inductive biases. We also examine explanations in imi-

tation learning and communicative learning paradigms. These explanations are intended to

foster human trust and address the value alignment problem between humans and machines.

In the imitation learning setting, we show that the model components that best contribute to

fostering human trust do not necessarily correspond to the model components contributing

ii



most to task performance. In the communicative learning paradigm, we show how theory

of mind can align a machine’s values to the preferences of a human user. Taken together,

this dissertation helps address two of the most critical problems facing AI systems today:

machine performance in unseen scenarios and human-machine trust.
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Dedicated to every aspiring learner on our planet. There is no subject not worth learning

and no idea not worth pondering. Keep exploring.
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strations, the model learns (B) symbolic representations by inducing a grammar
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tions, and (C) embodied haptic representations using an autoencoder to bridge
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explanation of robot action. These two components are integrated using the (D)

generalized Earley parser (GEP) for action planning. These processes comple-
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effective explanations that foster human trust. Copyright reserved to original

publication [EGL19]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 (A) The dorsum of the tactile glove developed consisting of 15 IMUs. (B) 26

integrated Velostat force sensor on the palmar aspect of the hand. (C) The

structure of the force sensor. (D) Characteristics of the force-voltage relation,

which is described by a logarithmic law of the force sensor. Copyright reserved
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3-dimensions of force data). The background colors indicate different action seg-

ments. (B) Embodied haptic representation and action prediction model. The
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human embedding maintains the essential information of the human state. The

embodiment mapping network (purple background) takes in a robot state and

maps to an equivalent human embedding. The action prediction network (light
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sented by the path from the root node to the node pointed by the edge. When

the corresponding child node of an edge is an action terminal, the number along

the edge represents a prefix probability; when the corresponding child is a parsing
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to push on the door. The black circle on the door indicates whether or not the
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asked the question assigned to their group throughout the experiment. (f) Af-

ter finishing the game, participants were asked qualitative trust and explanation
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CHAPTER 1

Introduction

Generalization, transfer, and explanation are critical abilities for artificial general intelligence

(AGI). Humans are able to generalize rapidly and apply domain knowledge from one area

to another. This transfer can be applying from one area of expertise in a domain to another

(near transfer) or from one domain to a completely different domain (far transfer, analogical

reasoning). These types of transfer always rely on forming some notion of a prior belief about

knowledge within a domain and applying that prior in a useful way in another domain.

Humans are apt at taking knowledge from one domain and applying it to another. Gick,

et al . present a classic example of analogical transfer with human subjects [GH80]. Subjects

are first informed about a radiation problem [DL45], where a patient must have a tumor

destroyed using a specific type of ray. At high intensities, a ray will destroy all human tissue,

including healthy tissue. At low intensities, a ray will not destroy healthy or cancerous tissue.

Subjects are then asked how the rays could be used to destroy the cancerous tissue.

Some subjects were first presented with background stories that may help prime them to

understand how to solve the problem. For instance, an Attack-Dispersion story was presented

to subjects. In the story, a general attempts to capture a fortress, but the attacking army

cannot attack at once and must attack in small groups. If the fortress is attacked from

multiple sides with small forces, it can be captured (similar to flanking maneuver). This

story serves as a prior, and human subjects presented with the story were more likely to

generate a solution to the radiation problem. For example, subjects may argue that multiple

low-intensity rays might meet at the tumor and constructively interfere to an intensity that
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can destroy the tumor but leave healthy human tissue intact.

Performing this mapping from one domain to another requires understanding a few dif-

ferent concepts. First, one must know the structural properties of one domain to map it onto

another. For instance, it is a prerequisite to understand why sending small groups of soldiers

from multiple directions is an effective strategy in battle to understand how the knowledge

can be applied in the radiation problem. Without knowledge in the source domain, it is not

possible to apply a transformation to transform knowledge in the source domain to a new

domain. Priors are a necessary part of knowledge transfer; with no prior knowledge, there

is no knowledge to transfer to a new domain.

Second, the agent must have a mechanism by which to construct a mapping from one

domain to another. There are a few different strategies for creating a mapping. The first

would be to directly map concepts in the source domain to the target domain. This works

when the concepts neatly align with one another, but finding a perfect or near-perfect map-

ping is not always feasible. In these settings, concepts and structure in the source domain

may need to be combined or reconstructed to map correctly to the target domain. This

could be achieved through abstraction, where concepts in a source domain are used to form

an abstract structure, and then that abstract structure is mapped to the target domain.

Understanding both the priors necessary and structural abstraction necessary is crucial to

solve generalization tasks. This dissertation will look at three settings to explore these issues,

outlined below.

Generalization and explanation in observational domains: Chapter 2 examines an

observational setting where an agent imitates a demonstration to achieve a task and is then

tasked with generalizing their knowledge to similar but unseen circumstances. In this setting,

a robot learns how to manipulate a medicine bottle by imitating a human demonstrator.

We will show that the robot effectively learns a policy from observations that generalizes

well to unseen bottles using a top-down and bottom-up approach. The top-down modeling
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component encodes the long-term, symbolic task structure in the form of a temporal And-

Or graph (T-AOG) while the bottom-up component allows the robot to imagine itself as a

human demonstrator and predict what the human would have done next under similar poses

and forces.

In this section, we will also explore an idea related to generalization - explanation. Of

the space of possible representations, the representations that generalize are likely to also

contain some explanatory power. If learned knowledge generalizes well, it must capture some

fundamental portions of the underlying task, and therefore, must contain some explanatory

power around those fundamental task components. In the bottle opening task, the robot

provides explanations into how it reasoned about the medicine bottle, and human observers

rate how much they trust the robot under different explanatory formats. Participants are also

asked to predict what they think the robot will do next, thereby examining the ability of an

explanatory format to impart a user with the ability to predict future actions by the machine.

The results show that the modeling components that best contribute to task performance

are not necessarily the modeling components that foster the most trust, indicating a need

to consider both task performance and explanation as separate but critical components for

robots interacting with humans.

Causal generalization in interactive domains: Chapter 3 showcases the second set-

ting, an interactive setting where agents must interact with their environment and update

their understanding of the world based on the outcomes of that interaction. In this domain,

the key to knowledge transfer is to explore the space in a way that imparts generalizable

knowledge. Specifically, we examine an interventional setting where an agent is placed in

a virtual “escape” room. Levers in the room act as a combination to “unlock” the room.

After completing a room, the agent will be placed in another room where the levers have

been scrambled, but the underlying abstract pattern to unlock the room remains the same.

In this setting, the key to generalization is to understand the abstract structure. Once the
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structure is known, an agent faced with a new room simply needs to identify the role of every

level in the abstract structure. With the roles identified, an optimal agent can immediately

generate the possible ways to unlock the rooms.

In this setting, we examine how well human subjects can solve this task. We find that

humans are extremely proficient at identifying the abstract structure and applying it to novel

domains. Additionally, we examine a plethora of model-free RL algorithms and find they are

incapable of learning a generalizable policy, even under favorable training conditions. Finally,

we present a hierarchical Bayesian learner that uses abstract top-down structure knowledge to

learn a prior over the space of possible causal structures and bottom-up feature knowledge to

learn which features may provide hints about causal components in the scene. The Bayesian

learner shows similar trends as human learners and achieves near-optimal performance.

Value alignment and explanation in communicative domains: Chapter 4 then ex-

pands on the explainable AI work in Chapter 2 by looking at an interactive, communicative

learning setting where each agent has partial information regarding the task. This partial

information creates the need for explanation (communication) between the agents. In the

setting, a human user is overseeing a group of scouts navigate in a dangerous area. The

human user understands the values of the group, and the scouts relay information (observa-

tions) to the human. Thus the communication facilitates a value alignment problem, where

the robot scouts must align their values to human values based on feedback from the human.

The results show the scouts are able to align successfully with human values, and at a given

time point, humans are able to infer the current value function of the scouts (even when it is

different from their own). These results are promising for solving value alignment problems

with a communicative learning framework.

Together, these three settings encompass important general cases of knowledge transfer

and explanation: one where an agent can only rely on observations to learn a generaliz-

able policy, another where the agent must learn how to generalize by actively intervening in
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the environment, and a third where agents with partial information must communicate and

collaborate to achieve a task. We believe that learning from imitation, intervention, and com-

munication have fundamentally different properties for generalization. From observations,

a learner can at best identify causal connections up to a certain degree, though this does

not inhibit a learner from learning a policy that can generalize well to unseen environments.

From interventions, one can effectively learn causal relationships through deliberate exper-

imentation, though a learner needs effective priors to guide the learning process. Without

such priors, the space of possible causal relations is exponential and too vast to explore effec-

tively. From communication and explanation, agents can align values and act in accordance

with each other’s preferences and beliefs.

This dissertation explores and attempts to answer some of the most pressing issues for

current machine learning systems; generalization, transfer, and explanation are all unsolved

problems that pose critical and challenging problems for the future of AI. Here, we attempt

to add clarity to the conversation by exploring different settings to highlight the importance

and difficulty of answering these questions. We advance the state of the art in imitation

learning, casual learning, explainable AI, and communicative learning to achieve these goals.

The fundamental questions moving forward are how this work can be expanded and scaled

to larger experiments and how we can integrate these ideas to create a capable learner and

explainer in a wide variety of settings.
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CHAPTER 2

Generalization and Explanation in Imitation Learning

In this chapter, we examine generalization in an imitation learning setting and show a robot

capable of transferring knowledge to novel problems using a high-level task planner and a

low-level haptic action predictor. Consider the task of opening medicine bottles that have

child-safety locking mechanisms (Fig. 2.1(a)). These bottles require the user to push or

squeeze in various places to unlock the cap. By design, attempts to open these bottles using

a standard procedure will result in failure. Even if the agent visually observes a successful

demonstration, imitation of this procedure will likely omit critical steps in the procedure. The

visual procedure for opening both medicine and traditional bottles is typically identical. The

agent lacks understanding of the tactile interaction required to unlock the safety mechanism

of the bottle. Only direct observation of forces or instruction can elucidate the correct

procedure (Fig. 2.1(e)). Even with knowledge of the correct procedure, opening medicine

bottles poses several manipulation challenges that involve feeling and reacting to the internal

mechanisms of the bottle cap. Although the presented study takes opening medicine bottles

as an example, many other tasks share similar properties and require non-trivial reasoning

such as opening locked doors [SGG08].

This chapter develops an integrated framework consisting of a symbolic action planner us-

ing a stochastic grammar as the planner-based representation and a haptic prediction model

based on neural networks to form the data-driven representation. In addition to opening

medicine bottles, this chapter will examine the explainability of different model components.

A hallmark of humans as social animals is the ability to answer this “why” question by
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Figure 2.1: Given a RGB-D-based image sequence (a), although we can infer the skeleton of

hand using vision-based methods (b), such knowledge cannot be easily transferred to a robot

to open a medicine bottle (c), due to the lack of force sensing during human demonstrations.

In this chapter, we utilize a tactile glove (d) and reconstruct both forces and poses from

human demonstrations (e), enabling robot to directly observe forces used in demonstrations

so that the robot can successfully open a medicine bottle (f). Copyright reserved to original

publication [EGX17].

providing comprehensive explanations of the behavior of themselves and others. The drive

to seek explanations is deeply rooted in human cognition. Preschool-age children tend to

attribute functions to all kinds of objects—clocks, lions, clouds, and trees, as explanations

of the activity that these objects were apparently designed to perform [Kel99, GMK99]. The

strong human preference and intrinsic motivation for explanation are likely due to its central

role in promoting mutual understanding, which fosters trust between agents and thereby

enables sophisticated collaboration [Lom06, Tom10].

However, a strong human desire for explanations has not been sufficiently recognized
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by modern artificial intelligence (AI) systems, in which most methods primarily focus on

task performance [Gun17]. Consequently, robot systems are still in their infancy in devel-

oping the ability to explain their own behavior when confronting noisy sensory inputs and

executing complex multi-step decision processes. Planner-based robot systems can gener-

ally provide an interpretable account for their actions to humans (e.g ., by Markov decision

processes [FHL16, HS17], HTN [EHN96], or STRIPS [FN71]); but these planners strug-

gle to explain how their symbolic-level knowledge is derived from low-level sensory inputs.

In contrast, robots equipped with Deep Neural Networks (DNNs) [HOT06] have demon-

strated impressive performance in certain specific tasks due to their powerful ability to

handle low-level noisy sensory inputs [DCH16, LLS15]. However, DNN-based methods have

well-known limitations, notably including a lack of interpretability of the knowledge repre-

sentation [Mar18, MP17, Dom15]. Some recent DNN work addresses this issue using saliency

maps [KRD18, YKY18] or modularized components [HAD18, ZNZ18]. These data-driven

approaches have demonstrated strong capabilities of handling noisy real-time sensory inputs,

distilling the raw input to predict the effect and determine the next action. However, little

work has been done to develop the synergy between the classic symbolic AI and the re-

cent development of DNNs to empower machines with the ability to provide comprehensive

explanations of their behavior.

The project in this chapter aims to disentangle explainability from task performance,

measuring each separately to gauge the advantages and limitations of two major families

of representations—symbolic representations and data-driven representations—in both task

performance and imparting trust to humans. The goals are to explore: (i) what constitutes

a good performer for a complex robot manipulation task? (ii) How can we construct an

effective explainer to explain robot behavior and impart trust to humans?

We examine this integrated framework in a robot system using a contact-rich manip-

ulation task of opening medicine bottles with various safety lock mechanisms. From the

performer’s perspective, this task is a challenging learning problem involving subtle manip-
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ulations, as it requires a robot to push or squeeze the bottle in various places to unlock the

cap. At the same time, the task is also challenging for explanation, as visual information

alone from a human demonstrator is insufficient to provide an effective explanation. Rather,

the contact forces between the agent and the bottle provide the hidden “key” to unlock the

bottle, and these forces cannot be observed directly from visual input. An overview of the

system is shown in Fig. 2.2.

To constitute a good performer, the robot system proposed here cooperatively combines

multiple sources of information for high performance, enabling synergy between a high-

level symbolic action planner and a low-level haptic prediction model based on sensory

inputs. A stochastic grammar model is learned from human demonstrations and serves as a

symbolic representation capturing the compositional nature and long-term constraints of a

task [TPZ13]. A haptic prediction model is trained using sensory information provided by

human demonstrations (i.e., imposed forces and observed human poses) to acquire knowledge

of the task. The symbolic planner and haptic model are combined in a principled manner

using an improved generalized Earley parser (GEP) [QJZ18], which predicts the next robot

action by integrating the high-level symbolic planner with the low-level haptic model. The

learning from demonstration framework presented here shares a similar spirit of our previous

work [EGX17] but with a new haptic model and a more principled manner, namely the GEP,

to integrate the haptic and grammar models. Computational experiments demonstrate a

strong performance improvement over the symbolic planner or haptic model alone.

To construct an effective explainer, the proposed approach draws from major types of

explanations in human learning and reasoning that may constitute representations to foster

trust by promoting mutual understanding between agents. Previous studies suggest humans

generate explanations from functional perspectives that describe the effects or goals of ac-

tions and from mechanistic perspectives that focus on behavior as a process [Lom13]. The

haptic prediction model is able to provide a functional explanation by visualizing the essen-

tial haptic signals (i.e., effects of the previous action) to determine the next action. The
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symbolic action planner is capable of providing a mechanistic explanation by visualizing mul-

tiple planning steps (instead of just one) to describe the process of the task. The proposed

robot system provides both functional and mechanistic explanations using the haptic model

and symbolic planner, respectively.

To examine how well robot-generated explanations impart human trust, we conduct hu-

man experiments to assess whether explanations provided by the robot system can foster

trust in human users, and if so, what forms of explanation are the most effective in en-

hancing human trust in machines. In this chapter, we refer to the cognitive component

of “trust” [Sim07] based on rationality. Cognitive trust is especially important in forming

trust within secondary groups (such as human-machine relations) [LW85] compared to the

emotional component typically more important in primary group relations (such as family

and close friends). Our psychological experiment focuses on cognitive trust, stressing on

a belief or an evaluation with “good rational reasons,” as this is the crucial ingredient of

human-machine trust built on specific beliefs and goals with attention to evaluations and

expectations [CF98]. Specifically, human participants were asked to report qualitative trust

ratings after observing robot action sequences along with different forms of explanations for

the robot’s internal decision-making as it solved a manipulation task. Then, participants

observed similar but new robot executions without access to explanations and were asked

to predict how the robot system is likely to behave across time. These empirical findings

shed light on the importance of learning human-centric models that make the robot system

explainable, trustworthy, and predictable to human users. Our results show that forms of

explanation that are best suited to impart trust do not necessarily correspond to those com-

ponents contributing to the best task performance. This divergence shows a need for the

robotics community to adopt model components that are more likely to foster human trust

and integrate these components with other model components enabling high task perfor-

mance.

The ideas presented in this chapter were completed across 4 different publications and
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Figure 2.2: Overview of demonstration, learning, evaluation, and explainability. By observ-

ing human demonstrations, the robot learns, performs, and explains using both a symbolic

representation and a haptic representation. (A) Fine-grained human manipulation data is

collected using a tactile glove. Based on the human demonstrations, the model learns (B)

symbolic representations by inducing a grammar model that encodes long-term task struc-

ture to generate mechanistic explanations, and (C) embodied haptic representations using

an autoencoder to bridge the human and robot sensory input in a common space, providing

a functional explanation of robot action. These two components are integrated using the

(D) GEP for action planning. These processes complement each other in both (E) improv-

ing robot performance and (F) generating effective explanations that foster human trust.

Copyright reserved to original publication [EGL19].

in collaboration with Feng Gao, Hangxin Liu, Xu Xie, Matt Millar, Siyuan Si, Brandon

Rothrock, Veronica Santos, Hongjing Lu, Ying Nian Wu, and Song-Chun Zhu [EGL19,
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XLE18, EGX17, LXM17]. The author’s contributions to this project include data collection

using the tactile glove, learning the T-AOG, training the haptic network, designing and

building the explanation interfaces, running the human subject studies, data analysis, and

deploying parts of the robot stack (e.g . deploying a mobile base system and vision system

for the robot). All other portions of the project were not completed by the author. The

majority of the material presented in the chapter is copyrighted by the original publisher

of [EGL19], and relevant portions have copyrights declared inside the material.

2.1 Tactile Glove and Data Collection

We utilize a tactile glove with force sensor [LXM17] to capture both the poses and the forces

involved in human demonstrations in opening medicine bottles that require a visually latent

interaction between the hand and the cap, e.g ., pushing as indicated in Fig. 2.2A. A human

demonstrator performed opening various types of bottles shown in Fig. 2.10A. Some of the

bottles contain child-safety locking mechanisms that require a procedure beyond simply

twisting to unscrew the cap. Most child-safety locks require a particular force to be exerted

on a particular part of the bottle; these forces are difficult to infer from visual observation

alone.

Fifteen IMUs obtain the relative poses of finger phalanges with respect to the wrist (see

Fig. 2.3A) and develop a customized force sensor using a soft piezoresistive material (Velo-

stat) whose resistance changes under pressure [LXM17]. The 26 force sensors are placed on

the palm and fingers, as shown in Fig. 2.3B. The force sensor is constructed in a 5-layer, mir-

rored structure—Velostat is the inner layer, conductive fabric and wires are the middle layers,

and insulated fabric is the outer layer. Fig. 2.3C illustrates the structure of the force sensor,

and the force-resistance relation is characterized as Fig. 2.3D. In total, the glove provides

71 degrees of freedom, including all pose and force measurements of the hand, resulting in a

fine-grained reconstruction. The relative poses between the hand and manipulating objects
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Figure 2.3: (A) The dorsum of the tactile glove developed consisting of 15 IMUs. (B) 26

integrated Velostat force sensor on the palmar aspect of the hand. (C) The structure of

the force sensor. (D) Characteristics of the force-voltage relation, which is described by a

logarithmic law of the force sensor. Copyright reserved to original publication [EGL19].

(bottles and caps) are captured by a Vicon motion capture system. We captured 64 demon-

strations in total; the number of demonstrations varies by the number of possible grasping

approaches human demonstrators found natural. Twenty-nine demonstrations were collected

for the Bottle 1, 23 for Bottle 2, and 12 for Bottle 3.

The experimental setup is shown in Fig. 2.4. Fiducials are attached to each bottle and

its lid to track the pose of object parts. One additional fiducial is attached to the back of

the tactile glove to capture wrist pose in world space. A camera is used to record the video

of data collection procedures to help label the ground truth later.

A total of 64 human demonstrations, collected in [EGX17], of opening the 3 different

medicine bottles serve as the training data. These 3 bottles have different locking mecha-

nisms: no safety lock mechanism, a push-twist locking mechanism, and a pinch-twist locking

mechanism. To test the generalization ability of the robot system, we conduct a gener-

alization experiment with new scenarios different from training data, either a new bot-

tle (Fig. 2.10B) or a bottle with a modified cap with significantly different haptic signals

(Fig. 2.11). The locking mechanisms of the bottles in the generalization experiment are

similar but not identical (in terms of size, shape, and haptic signals) to the bottles used
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Figure 2.4: We use a Vicon system to obtain the poses of human’s wrist and object’s parts.

The camera is used to record the data collection procedure. Copyright reserved to original

publication [EGX17].

in human demonstrations. The haptic signals for the generalization bottles are significantly

different from bottles used in testing, posing challenges in transferring the learned knowledge

to novel unseen cases.

2.2 Robot Learning

2.2.1 Embodied Haptic Model

Using human demonstrations, the robot learns a manipulation strategy based on the observed

poses and forces exerted by human demonstrators. One challenge in learning manipulation

policies from human demonstration involves different embodiments between robots and hu-

man demonstrators. A human hand has five fingers, whereas a robot gripper may only have

two or three fingers; each embodiment exerts different sensory patterns even when perform-

ing the very same manipulation. Hence, the embodied haptic model for the robot system

cannot simply duplicate human poses and forces exerted by human hands; instead, a robot

should imitate the actions with the goal to produce the same end-effect in manipulating the
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medicine bottle (e.g ., imposing a certain force on the cap). The critical approach in our

model is to employ embodied prediction, i.e., let the robot imagine its current haptic state

as a human demonstrator and predict what action the demonstrator would have executed

under similar circumstances in the next time step. Intuitively, the embodied haptic pre-

dictions endow the robot with the ability to ask itself: if I imagine myself as the human

demonstrator, which action would the human have taken next based on the poses and forces

exerted by their hand? Hence, the resulting haptic model provides a functional explanation

regarding the forces exerted by the robot’s actions.

Fig. 2.5 illustrates the force patterns exerted by a robot and a human demonstrator. As

shown in panels A and C, due to the differences between a robot gripper and a human hand,

the haptic sensing data from robots and humans show very different patterns from each

other in terms of dimensionality and duration within each segmented action (illustrated by

the colored segments).

To address the cross-embodiment problem, we train a haptic model in a similar approach

as in [EGX17] to predict which action the robot should take next based on perceived human

and robot forces and poses. The present haptic model learns a prediction model in a three-

step process: (i) learning an autoencoder that constructs a low-dimensional embedding of

human demonstrations containing poses and forces, as shown in Fig. 2.5B. (ii) Training an

embodiment mapping to map robot states to equivalent human embeddings, thereby allowing

the robot to imagine itself as a human demonstrator to produce the same force, achieving

functional equivalence to generate the same end effect as the human demonstrator. This

embodiment mapping is trained in a supervised fashion, using labeled equivalent robot and

human states. (iii) Training a next action predictor based on the human embeddings and the

current action. This action predictor is also trained in a supervised fashion, using segmented

human demonstrations.

The embodied haptic model leverages low-level haptic signals obtained from the robot’s

manipulator to make action predictions based on the human poses and forces collected with
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Figure 2.5: Illustration of learning embodied haptic representation and action prediction

model. An example of the force information in (A) the human state, collected by the

tactile glove (with 26 dimensions of force data), and force information in (C) the robot

state, recorded from the force sensors in the robot’s end-effector (with 3-dimensions of force

data). The background colors indicate different action segments. (B) Embodied haptic

representation and action prediction model. The autoencoder (yellow background) takes

a human state, reduces its dimensionality to produce a human embedding, and uses the

reconstruction to verify that the human embedding maintains the essential information of

the human state. The embodiment mapping network (purple background) takes in a robot

state and maps to an equivalent human embedding. The action prediction network (light

blue background) takes the human embedding and the current action and predicts what

action to take next. Copyright reserved to original publication [EGL19].
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the tactile glove. This embodied haptic sensing allows the robot to reason about (i) its own

haptic feedback by imagining itself as a human demonstrator, and (ii) what a human would

have done under similar poses and forces. The critical challenge here is to learn a mapping

between equivalent robot and human states, which is difficult due to the different embod-

iments. From the perspective of generalization, manually designed embodiment mappings

are not desirable. To learn from human demonstrations on arbitrary robot embodiments,

we propose an embodied haptic model general enough to learn between an arbitrary robot

embodiment and a human demonstrator.

The embodied haptic model consists of three major components: (i) an autoencoder to

encode the human demonstration in a low-dimensional subspace; we refer to the reduced

embedding as the human embedding. (ii) An embodiment mapping that maps robot states

onto a corresponding human embedding, providing the robot with the ability to imagine

itself as a human demonstrator. (iii) An action predictor that takes a human embedding

and the current action executing as the input and predicts the next action to execute, trained

using the action labels from human demonstrations. Fig. 2.5B shows the embodied haptic

network architecture. Using this network architecture, the robot infers what action a human

was likely to execute based on this inferred human state. This embodied action prediction

model picks the next action according to:

at+1 ∼ p(·|ft, at), (2.1)

where at+1 is the next action, ft is the robot’s current haptic sensing, and at is the current

action.

The autoencoder network takes an 80-dimensional vector from the human demonstration

(26 for the force sensors and 54 for the poses of each link in the human hand) and uses

the post-condition vector, i.e., the average of last N frames (we choose N = 2 to minimize

the variance), of each action in the demonstration as input; see the Autoencoder portion of

Fig. 2.5B. This input is then reduced to an 8-dimensional human embedding. Given a human
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demonstration, the autoencoder enables the dimensionality reduction to an 8-dimensional

representation.

The embodiment mapping maps from the robot’s 4-dimensional post-condition vector,

i.e., the average of the last N frames (different from human post-condition due to a faster

sample rate on the robot gripper compared to the tactile glove; we choose N = 10), to

an imagined human embedding; see the Embodiment Mapping portion of Fig. 2.5B. This

mapping allows the robot to imagine its current haptic state as an equivalent low-dimensional

human embedding. The robot’s 4-dimensional post-condition vector consists of the gripper

position (1 dimension) and the forces applied by the gripper (3 dimensions). The embodiment

mapping network uses a 256-dimensional latent representation, and this latent representation

is then mapped to the 8-dimensional human embedding.

To train the embodiment mapping network, the robot first executes a series of super-

vised actions where if the action produces the correct final state of the action, the robot

post-condition vector is saved as input for network training. Next, human demonstrations

of equivalent actions are fed through the autoencoder to produce a set of human embed-

dings. These human embeddings are considered as the ground-truth target outputs for the

embodiment mapping network, regardless of the current reconstruction accuracy of the au-

toencoder network. Then the robot execution data is fed into the embodiment mapping

network, producing an imagined human embodiment. The embodiment mapping network

optimizes to reduce the loss between its output from the robot post-condition input and the

target output.

For the action predictor, the 8-dimensional human embedding and the 10-dimensional

current action are mapped to a 128-dimensional latent representation, and the latent repre-

sentation is then mapped to a final 10-dimensional action probability vector (i.e., the next

action); see Action Prediction portion of Fig. 2.5B. This network is trained using human

demonstration data, where a demonstration is fed through the autoencoder to produce a

human embedding, and that human embedding and the one-hot vector of the current action
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execution are fed as the input to the prediction network; the ground-truth is the next action

executed in the human demonstration.

The network in Fig. 2.5B is trained in an end-to-end fashion with three different loss

functions in a two-step process: (i) a forward pass through the autoencoder to update the

human embedding zh. After computing the error Lreconstruct between the reconstruction s′h

and the ground-truth human data sh, we back-propagate the gradient and optimize the

autoencoder:

Lreconstruct(s
′
h, sh) =

1

2
(s′h − sh)2. (2.2)

(ii) A forward pass through the embodiment mapping and the action prediction network. The

embodiment mapping is trained by minimizing the difference Lmapping between the embodied

robot embedding zr and target human embedding zh; the target human embedding zh is

acquired through a forward pass through the autoencoder using a human demonstration

post-condition of the same action label, sh. We compute the cross-entropy loss Lprediction of

the predicted action label a′ and the ground-truth action label a to optimize this forward

pass:

Lplanning(a′, a) = Lmapping + β · Lprediction

Lmapping =
1

2
(zr − zh)2

Lprediction = H(p(a′), q(a)),

(2.3)

where H is the cross-entropy, p is the model prediction distribution, q is the ground-truth

distribution, and β is the balancing parameter between the two losses.

2.2.1.1 Training Details of Embodied Haptic Model

In this section, we present the implementation detail for reproducibility.

Network Architecture The autoencoder is constructed with a multi-layer perceptron

(MLP); see Table 2.1. The human embedding can be obtained with a forward pass through
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the network. The supervision for the autoencoder is the original human post-condition.

The loss is measured by the reconstruction error. The robot-human embodiment mapping is

implemented with an MLP; see Table 2.2. The embodiment mapping is trained using equiva-

lent human and robot post-conditions (equivalent here means the post-condition of executing

the same action successfully). The human post-condition is fed through the autoencoder to

produce a human embedding, and this embedding serves as the supervision target for the

embodiment mapping network. The last major component of the embodied haptic prediction

model is the action predictor, also implemented with an MLP; see Table 2.3. The supervision

for the action predictor is the ground-truth human action labels.

Training Details We adopt a two-step updating schema for the embodied haptic model.

In the first step, we feed forward the human post-condition data into the autoencoder. The

encoder will reduce the high-dimensional human data to a low-dimensional human embed-

ding; the encoder and the decoder are learned with hyper-parameter shown in Table 2.4. The

supervision for the autoencoder is the reconstructed original human post-condition. In the

second step, with the human embedding and the action labels, the action predictor and the

embodiment mapping are training jointly with the hyper-parameters shown in Table 2.4. The

embodiment mapping is trained using equivalent human and robot post-conditions (equiva-

lent here means the post-condition of executing the same action successfully). The human

post-condition is fed through the autoencoder to produce a human embedding, and this

embedding serves as the supervision target for the embodiment mapping network. The

supervision for the action predictor is the ground-truth human action labels.

A similar embodied haptic model was presented in [EGX17] but with two separate loss

functions, which is more difficult to train compared to the single loss function presented in

this chapter. A clear limitation of the haptic model is the lack of long-term action planning.

To address this problem, we discuss the symbolic task planner below and then discuss how

we integrate the haptic model with the symbolic planner to jointly find the optimal action.
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Table 2.1: Network architecture and parameters of the autoencoder. Network architecture

is defined from the top of the table to the bottom, with the first and last layer being input

and output, respectively.

Operator Params

Linear 80

ReLU

Linear 64

ReLU

Linear 16

ReLU

Linear 8

ReLU

Linear 16

ReLU

Linear 64

ReLU

Linear 80

2.2.2 Symbolic Action Planner

Opening medicine bottles is a challenging multi-step manipulation, as one may need to push

on the cap to unlock it (visually unobservable), twist it, and then pull it open. A symbolic

representation is advantageous to capture the necessary long-term constraints of the task.

From labeled action sequences of human demonstrations, we induce a T-AOG, a probabilistic

graphical model describing a stochastic, hierarchical, and compositional context-free gram-

mar [ZM07], wherein an And-node encodes a decomposition of the graph into sub-graphs,

an Or-node reflects a switch among multiple alternate sub-configurations, and the terminal
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Table 2.2: Network architecture and parameters for robot to human embedding. Network

architecture is defined from the top of the table to the bottom, with the first and last layer

being input and output, respectively.

Operator Params

Linear, Linear 3, 1

ReLU, ReLU

Linear, Linear 128, 128

ReLU

Linear 8

Table 2.3: Network architecture and parameters for action prediction. Network architecture

is defined from the top of the table to the bottom, with the first and last layer being input

and output, respectively.

Operator Params

Linear, Linear 8, 13

ReLU, ReLU

Linear, Linear 64, 64

ReLU

Linear 10

nodes consist of a set of action primitives (such as push, twist, pull). A corpus of sentences

(i.e., action sequences in our case) is fed to the grammar induction algorithm presented

in [TPZ13], and the grammar is induced by greedily generating And-Or fragments according

to the data likelihood; the fragments represent compositional substructures that are com-

bined to form a complete grammar. In our case, the grammar is learned from segmented

and labeled human demonstrations. The resulting grammar offers a compact symbolic rep-
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Table 2.4: Hyper-parameters used during training.

Parameter Value

Autoencoder learning rate 5e-5

Action predictor learning rate 5e-5

Balance param. (β) 1

Batch size 16

No. of epochs 150

resentation of the task and captures the hierarchical structure of the task, including different

action sequences for different bottles, as well as different action sequences for the same bot-

tle. Examples of the T-AOG learning progress are shown in Fig. 2.6. The nodes connected

by red edges in Fig. 2.6C indicate a parse graph sampled from the grammar, and its terminal

nodes compose an action sequence for robot execution.

Based on the action sequences observed in human demonstrations, the induced grammar

can be used to parse and predict robot action sequences likely to lead to opening the medicine

bottle successfully, assuming each robot action corresponds to an equivalent human action.

The induced grammar can be parsed to generate new, unseen, and valid action sequences for

solving similar tasks (e.g ., opening different medicine bottles), and thus the grammar can

be used with symbolic planning methods, such as the Earley Parser [QJZ18]. We denote the

process of planning actions using a parser and the action grammar as the symbolic planner.

Hence, the symbolic planner endows the robot with the ability to ask itself from a mechanistic

perspective: based on what I have done thus far and what I observed the human do, which

actions are likely to open the bottle at the end of the sequence?

The symbolic planner utilizes stochastic context-free grammars to represent tasks, where

the terminal nodes (words) are actions and sentences are action sequences. Given an action

grammar, the planner finds the optimal action to execute next based on the action history,
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Figure 2.6: An example of action grammar induced from human demonstrations. Green

nodes represent And-nodes, and blue nodes represent Or-nodes. Probabilities along edges

emanating from Or-nodes indicate the parsing probabilities of taking each branch. Grammar

model induced from (A) 5 demonstrations, (B) 36 demonstrations, (C) 64 demonstrations.

The grammar model in (C) also shows a parse graph highlighted in red, where red numbers

indicate temporal ordering of actions. Copyright reserved to original publication [EGL19].

analogous to predicting the next word given a partial sentence.

The action grammar is induced using labeled human demonstrations, and we assume the

robot has an equivalent action for each human action. Each demonstration forms a sentence,

xi, and the collection of sentences from a corpus, xi ∈ X. The segmented demonstrations are

used to induce a stochastic context-free grammar using the method presented in [TPZ13].

This method pursues T-AOG fragments to maximize the likelihood of the grammar producing

the given corpus. The objective function is the posterior probability of the grammar given
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the training data X:

p(G|X) ∝ p(G)p(X|G) =
1

Z
e−α||G||

∏
xi∈X

p(xi|G), (2.4)

where G is the grammar, xi = (a1, a2, . . . , am) ∈ X represents a valid sequence of actions

with length m from the demonstrator, α is a constant, ||G|| is the size of the grammar, and

Z is the normalizing factor. Fig. 2.6 shows examples of induced grammars of actions.

During the symbolic planning process, this grammar is used to compute which action is

the most likely to open the bottle based on the action sequence executed thus far and the

space of possible future actions. A pure symbolic planner picks the optimal action based on

the grammar prior:

a∗t+1 = arg max
at+1

p(at+1 | a0:t, G), (2.5)

where at+1 is the next action, and a0:t is the action sequence executed thus far. This grammar

prior can be obtained by a division of two grammar prefix probabilities: p(at+1 | a0:t, G) =

p(a0:t+1 |G)
p(a0:t |G)

, where the grammar prefix probability p(a0:t |G) measures the probability that a0:t

occurs as a prefix of an action sequence generated by the action grammar G. Based on a clas-

sic parsing algorithm—the Earley parser [Ear70]—and dynamic programming, the grammar

prefix probability can be obtained efficiently by the Earley-Stolcke parsing algorithm [Sto95].

An example of pure symbolic planning is shown in Fig. 2.7.

However, due to the fixed structure and probabilities encoded in the grammar, always

choosing the action sequence with the highest grammar prior is problematic since it provides

no flexibility. An alternative pure symbolic planner picks the next action to execute by

sampling from the grammar prior:

at+1 ∼ p(· | a0:t, G). (2.6)

In this way, the symbolic planner samples different grammatically correct action sequences

and increases the adaptability of the symbolic planner. In the experiments, we choose to

sample action sequences from the grammar prior.
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Figure 2.7: Action grammars and grammar prefix trees used for parsing. (A) An example

action grammar. (B) A grammar prefix tree with grammar priors. The numbers along edges

are the prefix or parsing probabilities of the action sequence represented by the path from the

root node to the node pointed by the edge. When the corresponding child node of an edge

is an action terminal, the number along the edge represents a prefix probability; when the

corresponding child is a parsing terminal e, the number represents the parsing probability of

the entire sentence. In this example, the action sequence “grasp, push, twist, pull” has the

highest probability of 0.6. The root ε represents the empty symbol where no terminals were

parsed. Copyright reserved to original publication [EGL19].

In contrast to the haptic model, this symbolic planner lacks the adaptability to real-

time sensor data. However, this planner encodes long-term temporal constraints that are

missing from the haptic model, since only grammatically correct sentences have non-zero

probabilities. The GEP adopted in this chapter naturally combines the benefits of both the

haptic model and the symbolic planner; see the next section.

2.2.3 Integration of Symbolic Planner and Haptic Model

To integrate the long-term task structure induced by the symbolic planner and manipulation

strategy learned from haptic signals, we seek to combine the symbolic action planner and

26



embodied haptic model using the generalized Earley parser (GEP) [QJZ18]. The GEP is

a grammar parser that works on a sequence of sensory data; it combines any context-free

grammar model with probabilistic beliefs over possible labels (grammar terminals) of sensory

data. The output of the GEP is the optimal segmentation and label sentence of the raw

sensory data; a label sentence is optimal when its probability is maximized according to the

grammar priors and the input belief over labels while being grammatically correct. The core

idea of the GEP is to efficiently search in the language space defined by the grammar to find

the optimal label sentence.

To adopt the GEP for a robot system, we modify the GEP presented in [QJZ18] for online

planning. The grammar for the GEP remains the same grammar used in the symbolic plan-

ner; however, the GEP’s probabilistic beliefs come from the softmax distribution from the

haptic model. During the action planning process, a stochastic distribution of action labels

predicted by the haptic model is fed into the GEP at every time step. The GEP aggregates

the entire symbolic planning history with the current haptic prediction and outputs the best

parse to plan the most likely next action. Intuitively, such an integration of the symbolic

planner and haptic model enables the robot to ask itself: based on the human demonstration,

the poses and forces I perceive right now and the action sequence I have executed thus far,

which action has the highest likelihood of opening the bottle?

The integrated GEP model finds the next optimal action considering both the action

grammar G and the haptic input ft:

a∗t+1 = arg max
at+1

p(at+1 | a0:t, ft, G). (2.7)

Conceptually, this can be thought of as a posterior probability that considers both the

grammar prior and the haptic signal likelihood. The next optimal action is computed by

an improved generalized Earley parser (GEP) [QJZ18]; GEP is an extension of the classic

Earley parser [Ear70]. In the present work, we further extend the original GEP to make it

applicable to multisensory inputs and provide an explanation in real-time for robot systems,

instead of for offline video processing.
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The computational process of GEP is to find the optimal label sentence according to both

a grammar and a classifier output of probabilities of labels for each time step. In our case,

the labels are actions, and the classifier output is given by the haptic model. Optimality here

means maximizing the joint probability of the action sequence according to the grammar

prior and haptic model output while being grammatically correct.

The core idea of the algorithm is to directly and efficiently search for the optimal label

sentence in the language defined by the grammar. The grammar constrains the search space

to ensure that the sentence is always grammatically correct. Specifically, a heuristic search

is performed on the prefix tree expanded according to the grammar, where the path from

the root to a node represents a partial sentence (prefix of an action sequence).

GEP is a grammar parser, capable of combining the symbolic planner with low-level

sensory input (haptic signals in this chapter). The search process in the GEP starts from

the root node of the prefix tree, which is an empty terminal symbol indicating no terminals

are parsed. The search terminates when it reaches a leaf node. In the prefix tree, all leaf

nodes are parsing terminals e that represent the end of parse, and all non-leaf nodes represent

terminal symbols (i.e., actions). The probability of expanding a non-leaf node is the prefix

probability, i.e., how likely is the current path being the prefix of the action sequence. The

probability of reaching a leaf node (parsing terminal e) is the parsing probability, i.e., how

likely is the current path to the last non-leaf node being the executed actions and the next

action. In other words, the parsing probability measures the probability that the last non-

leaf node in the path will be the next action to execute. It is important to note that this

prefix probability is computed based on both the grammar prior and the haptic prediction;

in contrast, in the pure symbolic planner, the prefix probability is computed based on only

the grammar prior. An example of the computed prefix and parsing probabilities and output

of GEP is given by Fig. 2.8. For an algorithmic description of this process, see [EGL19].

The original GEP is designed for offline video processing. In this chapter, we made mod-

ifications to enable online planning for a robotic task. The major difference between parsing
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1 0.000 0.360 0.036 0.024 0.000 0.000 0.000 0.000
2 0.000 0.036 0.025 0.101 0.004 0.002 0.000 0.000
3 0.000 0.004 0.005 0.069 0.003 0.010 3.6e-04 2.4e-04
4 0.000 3.6e-04 6.8e-04 0.007 0.005 0.048 3.2e-04 0.001
5 0.000 3.6e-05 9.0e-05 7.2e-04 0.003 0.033 4.9e-04 0.005

prefix 1.000 0.600 0.060 0.119 0.009 0.058 0.001 0.006
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Time step grasp push pinch twist pull

0 0.6 0.1 0.1 0.1 0.1
1 0.6 0.1 0.1 0.1 0.1
2 0.1 0.1 0.6 0.1 0.1
3 0.1 0.1 0.6 0.1 0.1
4 0.1 0.1 0.1 0.6 0.1
5 0.1 0.1 0.1 0.6 0.1
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Figure 2.8: An example of the generalized Earley parser (GEP). (A) A classifier is applied

to a 6-frame signal and outputs a probability matrix as the input. (B) A table of the

cached probabilities of the algorithm. For all expanded action sequences, it records the

parsing probabilities at each time step and prefix probabilities. (C) Grammar prefix tree

with the classifier likelihood. The GEP expands a grammar prefix tree and searches in

this tree. It finds the best action sequence when it hits the parsing terminal e. It finally

outputs the best label “grasp, pinch, pull” with a probability 0.033. The probabilities of

children nodes do not sum to 1 because grammatically incorrect nodes are eliminated from

the search and the probabilities are not re-normalized [QJZ18]. Copyright reserved to original

publication [EGL19].

and planning is the uncertainty about past actions: there is uncertainty about observed

actions during parsing. However, during planning, there is no uncertainty about executed

actions—the robot directly chooses which actions to execute, thereby removing any ambi-

guity regarding which action was executed at a previous timestep. Hence, we need to prune

the impossible parsing results after executing each action; each time after executing an ac-

tion, we change the probability vector of that action to a one-hot vector. This modification
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Figure 2.9: Explanations generated by the symbolic planner and the haptic model. (A) Sym-

bolic (mechanistic) and haptic (functional) explanations at a0 of the robot action sequence.

(B), (C), and (D) show the explanations at times a2, a8, and a9, where ai refers to the ith

action. Note that the red on the robot gripper’s palm indicates a large magnitude of force

applied by the gripper, and green indicates no force; other values are interpolated. These

explanations are provided in real-time as the robot executes. Copyright reserved to original

publication [EGL19].

effectively prunes the action sequences that contain the impossible actions executed thus far

by the robot.
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2.3 Explanation Generation

The haptic model and symbolic planner are capable of providing explanations to humans

about robot behavior in real-time. Mechanistic explanations can be generated by the sym-

bolic planner in the form of action sequences as they represent the process of opening a

medicine bottle. Functional explanations can be provided by a visualization of the internal

robot gripper state (effects) used in the haptic model. It is worth noting that these models

are capable of providing such explanations but are not the only means of producing them.

Alternative action planners and haptic models could produce similar explanations, as long as

the robot systems are able to learn the corresponding representations for haptic prediction

and task structure. Fig. 2.9 shows the explanation panels over an action sequence. These

visualizations are shown in real-time, providing direct temporal links between explanation

and execution.

To visualize the forces imposed by the robot gripper, we first identify the max force

magnitude in all the force signal data collected from human demonstrations. Then, all force

data is normalized to the value between 0 and 1, where 0 corresponds to pure green in the

visualization, and 1 pure red. The value in between is interpolated linearly and displayed on

the robot’s palm.

2.4 Results

2.4.1 Robot Results

Fig. 2.10A and Fig. 2.10B show the success rate of the robot in performing the task of opening

the 3 medicine bottles used in human demonstrations and 2 new, unseen medicine bottles,

respectively; see more generalization results in Fig. 2.11. The 2 generalization bottles locking

mechanisms that are similar (but not identical) to the ones used in human demonstrations,

and the low-level haptic signals are significantly different, posing challenges in transferring
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the learned knowledge to novel unseen cases. Each bottle and model was executed 31 times on

our robot platform. In the testing experiments, Bottle 1 is a regular bottle without a locking

mechanism, Bottle 2 has a push-twist locking mechanism, and Bottle 3 requires pinching

specific points on the lid to unlock. In the generalization experiments, Bottle 4 also does

not have a locking mechanism, and Bottle 5 has a push-twist locking mechanism but with a

different shape, size, and haptic signals compared with the ones in the human demonstrations.

For both the testing and generalization experiments, the robot’s task performance measured

by the success rates decreases as the bottle’s locking mechanism becomes more complex, as

expected.

To quantitatively compare the difference between the model components, we conduct

ablative experiments on robot task performance using only the symbolic planner and only

the haptic model; see Fig. 2.10. The haptic model and symbolic planner vary in their

relative individual performance, but the combined planner using the GEP yields the best

performance for all cases. Hence, integrating both the long-term task structure provided by

the symbolic planner and the real-time sensory information provided by the haptic model

yields the best robot performance. The symbolic planner provides long-term action planning

and ensures the robot executes an action sequence capturing the high-level structure of the

task. However, models that solely rely on these symbolic structures are brittle to adjust

to perturbations of haptic signals, especially when the task relies more on the haptics as

the complexity increases. On the other hand, models that rely purely on haptic signals are

unable to impose multi-step task constraints, and thus may fail to infer a correct sequence

of actions based on the execution history. Our results confirm that by combining these

modalities together, the robot achieves the highest task performance.

Given that multiple modalities are involved in the GEP’s performance, it is crucial to

assess the contributions from different model components. We ran the χ2-test to determine

if different models (GEP, symbolic, and haptic) are statistically different in their ability

to open five bottles (3 bottles used in human demonstrations and 2 new bottles used in
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no lock push-twist to 
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Figure 2.10: Robot task performance on different bottles with various locking mechanisms

using the symbolic planner, haptic model, and the GEP that integrates both. (A) Testing

performance on bottles observed in human demonstrations. Bottle 1 does not have a locking

mechanism, Bottle 2 employs a push-twist locking mechanism, and Bottle 3 employs a pinch-

twist locking mechanism. (B) Generalization performance on new, unseen bottles. Bottle 4

does not have a locking mechanism, and Bottle 5 employs a push-twist locking mechanism.

The bottles used in generalization have similar locking mechanisms but evoke significantly

different haptic feedback. Regardless of testing on demonstration or unseen bottles, the best

performance is achieved by the GEP that combines the symbolic planner and haptic model.

Copyright reserved to original publication [EGL19].

the generalization task). The robot performs the manipulation task 31 times per medicine

bottle. With the significance level of 0.05, the results show that the performance of the GEP

model is significantly better than both symbolic model (χ2(1) = 10.0916, p = 0.0015) and

haptic model (χ2(1) = 13.0106, p < 0.001). Performance does not show difference between

the symbolic model and the haptic model, χ2(1) = 0.1263, p = 0.7232. These results suggest

that both haptic model and symbolic planner contribute to good task performance; when

the two processes are integrated with the GEP, the success rate of the robot for opening
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Figure 2.11: Additional generalization experiments on bottles augmented with different 3D-

printed caps. The GEP shows good performance across all bottles, indicating the GEP is able

to generalize to bottles with similar locking mechanisms as in the human demonstrations,

but significantly different haptic signals. Copyright reserved to original publication [EGL19].

medicine bottles is improved compared to the performance by the single-module models

based on either the haptic model or the symbolic planner.

2.4.2 Human Experiment

2.4.2.1 Experimental Design

The human experiment aims to examine whether providing explanations generated from the

robot’s internal decisions fosters human trust in machines and what forms of explanation

are the most effective in enhancing human trust. We conducted a psychological study with

150 participants; each was randomly assigned to one of five groups. Our experimental setup

consisted of two phases: familiarization and prediction. During familiarization, all groups

viewed the RGB video, and some groups were also provided with an explanation panel.

During the second phase of the prediction task, all groups only observed RGB videos.
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The five groups consist of the baseline no-explanation group, symbolic explanation group,

haptic explanation group, GEP explanation group, and text explanation group. For the

baseline no-explanation group, participants only viewed RGB videos recorded from a robot

attempting to open a medicine bottle, as shown in Fig. 2.12A. For the other four groups,

participants viewed the same RGB video of robot executions and simultaneously were pre-

sented with different explanatory panels on the right side of the screen. Specifically, the

symbolic group viewed the symbolic action planner illustrating the robot’s real-time inner

decision-making, as shown in Fig. 2.12B. The haptic group viewed the real-time haptic visu-

alization panel, as shown in Fig. 2.12C. The GEP group viewed the combined explanatory

panel, including the real-time robot’s symbolic planning and an illustration of haptic signals

from the robot’s manipulator, namely both Fig. 2.12B-C. The text explanation group was

provided a text description that summarizes why the robot succeeded or failed to open the

medicine bottle at the end of the video, as shown in Fig. 2.12D. See a summary in Fig. 2.12E

for the five experimental groups.

During the familiarization phase, participants were provided two demonstrations of robot

executions, with one successful execution of opening a medicine bottle and one failed exe-

cution without opening the same bottle. The presentation order of the two demonstrations

was counterbalanced across participants. After observing robot executions with explanation

panels, participants were first asked to provide a trust rating for the question: to what ex-

tent do you trust/believe this robot possesses the ability to open a medicine bottle? on a

scale between 0 and 100. The question was adopted from the questionnaire of measuring

human trust in automated systems [JBD00]. This question also clearly included the goal of

the system, to open a medicine bottle, to enhance the reliability in trust measures [CF98].

Hence, the rating provided a direct qualitative measure of human trust in the robot’s ability

to open medicine bottles.

In addition, we designed the second measure to assess the quantitative aspects of trust.

We adopted the definition by Castelfranchi and Falcone [CF98] that quantitative trust is
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Robot Explanation:

The key actions are pushing the 
cap three times and twisting the 
cap three times

Robot Explanation:

The key actions are pushing the 
cap three times and twisting the 
cap two times

Robot Explanation:

I succeeded to open the bottle 
because I pushed on the cap three 
times and twisted the cap twice

A B D

Group RGB (A) Symbolic (B) Haptic (C) Text (D)

Baseline X
Symbolic X X
Haptic X X
GEP X X X
Text X X

<latexit sha1_base64="wH37P6izE4FhdS54HDmzZWFl5rc="></latexit>

E Summary of human subject groups and explanations presented 

Action sequence:
Approach à Grasp à Push à Twist à
Ungrasp à Move à Grasp à Push à
Twist à Ungrasp à Move à Grasp à
Push à Pull

Action choices: 
1) Approach 4) Ungrasp 
2) Pull 5) Twist
3) Push 6) Move
7) Grasp 8) Pinch

C

Figure 2.12: Illustration of visual stimuli used in human experiment. All five groups ob-

served the RGB video recorded from robot executions, but differed by the access to various

explanation panels. (A) RGB video recorded from robot executions. (B) Symbolic expla-

nation panel. (C) Haptic explanation panel. (D) Text explanation panel. (E) A summary

of which explanation panels were presented to each group. Copyright reserved to original

publication [EGL19].

based on the quantitative dimensions of its cognitive constituents. Specifically, the greater

the human’s belief in the machine’s competence and performance, the greater the human

trust in machines. In the prediction phase, we asked participants to predict the robot’s

next action in a new execution with the same task of opening the same medicine bottle.

Participants viewed different segments of actions performed by the robot and were asked to

answer the prediction question over time. For this measure, participants in all five groups

only observed RGB videos of robot execution during the prediction phase; no group had
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access to any explanatory panel after the familiarization phase. The prediction accuracy

was computed as the quantitative measure of trust, with the presumption that, as the robot

behavior is more predictable to humans, greater prediction accuracy indicates higher degrees

of trust.

Human participants were recruited from the University of California, Los Angeles (UCLA)

Department of Psychology subject pool and were compensated with course credit for their

participation. A total of 163 students were recruited, each randomly assigned to one of the

five experimental groups. Thirteen participants were removed from the analysis for failing

to understand the haptic display panel by not passing a recognition task. Hence, the anal-

ysis included 150 participants (mean age of 20.7). The symbolic and haptic explanation

panels were generated as described in Section 2.3. The text explanation was generated by

the authors based on the robot’s action plan to provide an alternate text summary of robot

behavior. Although such text descriptions were not directed yielded by the model, they

could be generated by modern natural language processing methods.

The human experiment included two phases: familiarization and prediction. In the famil-

iarization phase, participants viewed two videos showing a robot interacting with a medicine

bottle, with one successful attempt of opening the bottle and one failed attempt without

opening the bottle. In addition to the RGB videos showing the robot’s executions, different

groups viewed the different forms of explanation panels. At the end of familiarization, par-

ticipants were asked to assess how well they trusted/believed the robot possessed the ability

to open the medicine bottle; see Fig. 2.13 for the illustration of the trust rating question.

Next, the prediction phase presented all groups with only RGB videos of a successful robot

execution; no group had access to any explanatory panels. Specifically, participants viewed

videos segmented by the robot’s actions; for segment i, videos start from the beginning of the

robot execution up to the ith action. For each segment, subjects were asked to predict what

action the robot would execute next; see Fig. 2.14 for an illustration of the action prediction

question.
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Figure 2.13: Qualitative trust question asked to human subjects after observing two demon-

strations of robot execution. This question was immediately asked after the familiarization

phase of the experiment; in other words, we asked this question immediately after the sub-

jects had observed robot executions with access to the explanation panel (if the subject’s

group had access to an explanation panel; i.e. all groups except baseline). Copyright reserved

to original publication [EGL19].

The prediction phase evaluates how well each explanation panel imparts prediction ability

after observing a robot’s behaviors in solving the problem of opening a medicine bottle. Note

that during the familiarization phase, the robot explains its behavior through explanatory

panels, but during the prediction phase, subjects observe the robot executing the task with

only the RGB videos. Thus our prediction question asks “after familiarizing with explanatory

panels, how well are human subjects able to predict robot behavior when observing only RGB

robot executions?” The prediction accuracy is computed as the percentage of correct action

predictions in the sequence. This experimental design examines how well each explanatory

panel imparts prediction ability under new robot executions where no explanation panel is

available. For each question, participants selected from 8 actions: push on the cap, pinch

the cap, pull the cap, twist the cap, grasp the cap, ungrasp the cap, move the left robot arm

to grasping position, and nothing.

Regardless of group assignment, all RGB videos were the same across all groups; i.e., we

show the same RGB video for all groups with varying explanation panels. This experimental
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Figure 2.14: Prediction accuracy question asked to human subjects after each segment of

the robot’s action sequence during the prediction phase of the experiment. No group had

access to explanation panels during the prediction phase; subjects had to predict the action

while only observing RBG videos of each action segment. Copyright reserved to original

publication [EGL19].

design isolates potential effects of execution variations in different robot execution models

presented in Section 2.2; we only seek to evaluate how well explanation panels foster qualita-

tive trust and enhance prediction accuracy and keep robot execution performance constant

across groups to remove potential confounding.

For both qualitative trust and prediction accuracy, the null hypothesis is that the ex-

planation panels foster equivalent levels of trust and yield the same prediction accuracy

across different groups, and therefore no difference in trust or prediction accuracy would
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be observed. The test is a two-tailed independent samples t-test to compare performance

from two groups of participants, as we used between-subjects design in the study, with a

commonly used significance level α = 0.05, assuming t-distribution, and the rejection region

is p < 0.05.

2.4.2.2 Human Study Results

Fig. 2.15A shows human trust ratings from the five different groups. The analysis of vari-

ance (ANOVA) reveals a significant main effect of groups (F (4, 145) = 2.848; p = 0.026)

with the significance level of 0.05. This result suggests that providing explanations about

robot behavior in different forms impacts the degree of human trust in the robot system.

Furthermore, we find that the GEP group with both symbolic and haptic explanation panels

yields the highest trust rating, with a significantly better rating than the baseline group in

which explanations are not provided (independent-samples t-test, t(58) = 2.421; p = 0.019).

Interestingly, the GEP group shows a greater trust rating than the text group in which a

summary description is provided to explain the robot behavior (t(58) = 2.352; p = 0.022),

indicating detailed explanations of the robot’s internal decisions over time is much more

effective in fostering human trust than a summary text description to explain robot behav-

ior. In addition, trust ratings in the symbolic group are also higher than ratings in the

baseline group (t(58) = 2.269; p = 0.027) and higher than ratings in the text explanation

group (t(58) = 2.222; p = 0.030), suggesting symbolic explanations play an important role in

fostering human trust of the robot system. However, the trust ratings in the haptic explana-

tion group are not significantly different from the baseline group, implying that explanations

based only on haptic signals are not effective ways to gain human trust despite the expla-

nations are also provided in real-time. No other significant group differences are observed

between any other pairing of the groups.

The second trust measure based on prediction accuracy yields similar results. All groups

provide action predictions above the chance-level performance of 0.125 (as there are 8 actions
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Figure 2.15: Human results for trust ratings and prediction accuracy. (A) Qualitative mea-

sures of trust: average trust ratings for the five groups. and (B) Average prediction accuracy

for the five groups. The error bars indicate the 95% confidence interval. Across both mea-

sures, the GEP performs the best. For qualitative trust, the text group performs most

similarly to the baseline group. For a tabular summary of the data, see [EGL19]. Copyright

reserved to original publication [EGL19].

to choose from), showing that humans are able to predict the robot’s behavior after only a

couple of observations of a robot performing a task. The ANOVA analysis shows a significant

main effect of groups (F (4, 145) = 3.123; p = 0.017), revealing the impact of provided

explanations on the accuracy of predicting the robot’s actions. As shown in Fig. 2.15B,

participants in the GEP group yield significantly higher prediction accuracy than those in

the baseline group (t(58) = 3.285; p = 0.002). Prediction accuracy of the symbolic group also

yields better performance than the baseline group (t(58) = 2.99; p = 0.004). Interestingly, we

find that the text group shows higher prediction accuracy than the baseline group (t(58) =

2.144; p = 0.036). This result is likely due to the summary text description providing a loose

description of the robot’s action plan; such a description decouples the explanation from

the temporal execution of the robot. The prediction accuracy data did not reveal any other

significant group differences among other pairs of groups.

In general, humans appear to need real-time, symbolic explanations of the robot’s internal
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decisions for performed action sequences in order to establish trust in machines when per-

forming multi-step complex tasks. Summary text explanations and explanations only based

on haptic signals are not effective ways to gain human trust, and the GEP and symbolic

group foster similar degrees of human trust to the robot system according to both measures

of trust.

2.5 Conclusion and Discussion

In terms of performance, our results demonstrate that a robot system can learn to solve

challenging tasks from a small number of human demonstrations of opening three medicine

bottles. This success in learning from small data is primarily supported by learning multiple

models for joint inference of task structure and sensory predictions. We found that neither

purely symbolic planning nor a haptic model is as successful as an integrated model including

both processes.

Our model results also suggest that the relative contributions from individual modules,

namely the symbolic planner and haptic predictions, can be influenced by the complexity of

the manipulation task. For example, in testing scenarios, for Bottle 1 with no safety locking

mechanism, the symbolic planner slightly outperforms the haptic model. Conversely, to open

Bottle 3 that has complex locking mechanisms, the haptic model outperforms the symbolic

planner as haptic signals provide critical information for the pinch action needed to unlock

the safety cap. For generalization scenarios with new medicine bottles that are unseen in

human demonstrations, the symbolic planner maintains a similar performance compared to

equivalent bottles in the testing scenarios, whereas the haptic model performance decreases

significantly. We also note that the symbolic planner performance decreases faster as com-

plexity increases, indicating pure symbolic planners are more brittle to circumstances that

require additional haptic sensing. Furthermore, as bottle complexity increases, model perfor-

mance benefits more from integrating the symbolic planner and haptic signals. This trend
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suggests that more complex tasks require the optimal combination of multiple models to

produce effective action sequences.

In terms of explainability, we found that reasonable explanations generated by the robot

system are important for fostering human trust in machines. Our experiments show that

human users place more trust in a robot system that has the ability to provide explanations

using symbolic planning. An intriguing finding from these experiments is that providing

explanations in the form of a summarized text description of robot behavior is not an effective

way to foster human trust. The symbolic explanation panel and text summary panel both

provide critical descriptions of the robot’s behavior at the abstract level, explaining why a

robot succeeded or failed the task. However, the explanations provided by the two panels

differ in their degree of detail and temporal presentation. The text explanation provides a

loose description of the important actions that the robot executes after the robot finished

the sequence. In contrast, the symbolic explanation included in the GEP’s panel provides

human participants with real-time internal decisions that the robot is planning to execute

at each step. This mode of explanation enables the visualization of task structure for every

action executed during the sequence and likely evokes a sense that the robot actively makes

rational decisions.

However, it is not the case that a detailed explanation is always the best approach to

foster human trust. A functional explanation of real-time haptic signals is not very effective

in gaining human trust in this particular task. Information at the haptic level may be

excessively tedious and may not yield a sense of rational agency that allows the robot to

gain human trust. To establish human trust in machines and enable humans to predict robot

behaviors, it appears that an effective explanation should provide a symbolic interpretation

and maintain a tight temporal coupling between the explanation and the robot’s immediate

behavior.

Taking together both performance and explanation, we found that the relative contribu-

tions of different models for generating explanations may differ from their contributions to
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maximizing robot performance. For task performance, the haptic model plays an important

role for the robot to successfully open a medicine bottle with high complexity. However,

the major contribution to gain human trust is made by real-time mechanistic explanations

provided by the symbolic planner. Hence, model components that impart the most trust do

not necessarily correspond to those components contributing to the best task performance.

This divergence is intuitive as there is no requirement that components responsible for gen-

erating better explanations are the same components contributing to task performance; they

are optimizing different goals. This divergence also implies that the robotics community

should adopt model components that gain human trust, while also integrating these compo-

nents with high-performance ones to maximize both human trust and successful execution.

Robots endowed with explainable models offer an important step towards integrating robots

into daily life and work.
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CHAPTER 3

Generalization and Transfer in Causal Learning

In this chapter, we examine a learning problem in an interventional setting and show human

learns are capable of causal abstraction, show model-free reinforcement is not, and present

a hierarchical Bayesian capable of achieving near-human performance. The ability of agents

to learn and reuse knowledge is a fundamental characteristic of general intelligence and is

essential for agents to succeed in novel circumstances [LH07]. The key research question

in the field of causal learning is how various intelligent systems, ranging from rats to hu-

mans and machines, can acquire knowledge about cause-effect relations in novel situations.

Decades ago, a number of researchers ([SD88, Sha91]) suggested that causal knowledge can

be acquired by a basic learning mechanism, associative learning, that non-human animals

commonly employ in classical conditioning paradigms to learn the relationship between stim-

uli and responses. A major theoretical account of associative learning is the Rescorla-Wagner

model, guided by prediction error in updated associative weights on cue-effect links [RW72].

However, subsequent research has produced extensive evidence that human causal learn-

ing depends on more sophisticated processes than associative learning of cue-effect links [HC11];

e.g ., humans explore and experiment with dynamic physical scenarios to refine causal hy-

potheses [BGT18, SF15]. Researchers have demonstrated that humans uncover causal rela-

tionships through the discovery of abstract causal structure [WH92] and causal strength [Che97].

Simultaneously, causal graphical models and Bayesian statistical inference have been devel-

oped to provide a general representational framework for how causal structure and strength

are discovered [GT05, LYL08, GT09, TGK06, BLS15, BDG17, HC11]. Under such a frame-
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work, causal connections encode a structural model of the world. States represent some

status in the world, and connections between states imply the presence of a causal relation-

ship. However, a critical component in causal learning is active interaction with the physical

world, based on whether perceived information matches predictions from causal hypotheses.

In this chapter, we combine causal learning (a form of model-building) with a model-based

planner to effectively achieve tasks in environments where dynamics are unknown.

In contrast to this work beyond the associative account of causal understanding, recent

success in the field of deep reinforcement learning (RL) has produced a wide body of research,

showcasing agents learning how to play games [MKS15, SHM16, SLA15, SWD17] and develop

complex robotic motor skills [LFD16, LHP15]. RL focuses on learning what to do by mapping

situations to actions to maximize a reward signal [SB98]. RL has historically been closely

linked with associative learning theory and conceives of learning as essentially a process

of trial and error. The connection between classical conditioning and temporal-difference

learning, a central element of RL, is widely acknowledged [SB90]. Hence, RL could be

considered as a modern version of associative learning, where learning is not only guided

by prediction error, but also by other learning mechanisms, notably the estimation of the

reward function.

Despite this success, the majority of model-free RL methods still have great difficulty

transferring learned policies to new environments with consistent underlying mechanics but

some dissimilar surface features [ZVM18, KSM17]. This deficiency is due to the limited

scope of the agent’s overall objective: learning which actions will likely lead to future rewards

based on the current state of the environment. In traditional RL architectures, changes to

the location and orientation of critical elements (instance-level) in the agent’s environment

appear as entirely new states, even though their functionality often remains the same (in

the abstract-level). Since model-free RL agents do not attempt to encode transferable rules

governing their environment, new situations appear as entirely new worlds. Although an

agent can devise expert-level strategies through experiences in an environment, once that
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environment is perturbed, the agent must repeat an extensive learning process to relearn an

effective policy in the altered environment.

With these significant developments in RL, is it possible for modern learning models to

acquire human-like causal knowledge? To address this question, we designed a novel task to

examine learning of action sequences governed by different causal structures, allowing us to

determine in what situations humans can transfer their learned causal knowledge. Our design

involves two types of basic causal structures (common cause (CC) and common effect (CE);

see Fig. 3.2). When multiple causal chains are consolidated into a single structure, they can

form either CC or CE schemas. Previous studies using an observational paradigm have found

an asymmetry in human learning for common-cause and common-effect structures [WH92].

To design a novel environment for humans, we developed a virtual “escape room”. Imag-

ine that you find yourself trapped in an empty room where the only means of escape is

through a door that will not open. Although there is no visible keyhole on the door–nor do

you see any keys lying around–there are some conspicuous levers sticking out of the walls.

Your first instinct might be to pull the levers at random to see what happens, and given

the outcome, you might revise your theory about how lever interactions relate to the open-

ing of the door. We refer to this underlying theory as a causal schema: i.e., a conceptual

organization of events identified as cause and effect [Hei58]. These schemas are discovered

with experience and can potentially be transferred to novel target problems to infer their

characteristics [KLH17].

In the escape room example, one method of unlocking the door is to induce the causal

schema connecting lever interactions to the door’s locking mechanism. However, it remains

unclear whether people are equally proficient in uncovering CC and CE schemas in novel

situations. In the current study, we first assessed whether human causal learning can be

impacted by the underlying structure, comparing learning of a CC structure with learning

of a CE structure. We then examined whether learning one type of causal structure can

facilitate subsequent learning of a more complex version of the same schema involving a
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greater number of causal variables. We compared human performance in a range of learning

situations with that of a deep RL model to determine whether behavioral trends can be

captured by an algorithm that learns solely by reward optimization with no prior knowledge

about causal structure.

After examining whether or not RL can acquire human-level causal knowledge, we present

a hierarchical Bayesian learner capable of producing similar learning trends as human learn-

ers. For the hierarchical Bayesian learner, the transfer learning problem is viewed as a

combination of instance-level associative learning and abstract-level causal learning. We

propose: (i) a bottom-up associative learning scheme that determines which attributes are

associated with changes in the environment, and (ii) a top-down causal structure learning

scheme that infers which atomic causal structures are useful for a task. The outcomes of

actions are used to update beliefs about the causal hypothesis space, and our agent learns a

dynamics model capable of solving the escape room task.

This chapter integrates multiple modeling approaches to produce a highly capable agent

that can learn causal schemas and transfer knowledge to new scenarios. The contributions

of this chapter:

1. Showcasing a new environment specifically designed to test causal generalization;

2. Examining how human learners perform in causal generalization tasks;

3. Examining how well model-free RL performs in causal generalization tasks;

4. Learning a bottom-up associative theory that encodes which objects and actions con-

tribute to causal relations;

5. Learning which top-down atomic causal schemas are solutions, thereby learning gen-

eralized abstract task structure; and

6. Integrating the top-down and bottom-up learning scheme with a model-based planner

to optimally select interventions from causal hypotheses.
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Abstract

Learning transferable knowledge across similar but different
settings is a fundamental component to generalized intelli-
gence. In this paper, we approach the transfer learning chal-
lenge from a causal theory perspective. Our agent is endowed
with two basic yet general theories for transfer learning: (i) a
task shares a common abstract structure that is invariant across
domains, and (ii) the behavior of specific features of the envi-
ronment remain constant across domains. We adopt a Bayesian
perspective of causal theory induction and use these theories
to transfer knowledge between environments. Given these
general theories, the goal is to train an agent by interactively
exploring the problem space to (i) discover, form, and trans-
fer useful abstract and structural knowledge, and (ii) induce
useful knowledge from the instance-level attributes observed
in the environment. Specifically, the agent seeks to learn a
model capturing both specific environments and environments
in general. A hierarchy of Bayesian structures is used to model
abstract-level structural causal knowledge, and an instance-
level associative learning scheme learns which specific objects
can be used to induce state changes through interaction. This
model-learning scheme is then integrated with a model-based
planner to achieve a task in the OpenLock environment, a
virtual “escape room” with a complex hierarchy that requires
agents to reason about an abstract, generalized causal structure.
We compare performances against a set of predominate rein-
forcement learning (RL) algorithms. RL agents showed poor
ability transferring learned knowledge across different trials.
Whereas the proposed model revealed similar performance
trends as human learners, and more importantly, demonstrated
transfer behavior across trials and learning situations.1

1 Introduction
The ability of agents to learn and reuse knowledge is a
fundamental characteristic of general intelligence and is es-
sential for agents to succeed in novel circumstances (Legg
and Hutter 2007). Humans demonstrate a remarkable abil-
ity to transfer causal knowledge between environments gov-
erned by the same underlying mechanics, in spite of ob-
servational changes to the features of the environment (Ed-
monds et al. 2018). Early psychological research framed

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1The proposed algorithm and all baseline algorithms can be
found on the project website: test.
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Figure 1: (a) Starting configuration of a 3-lever OpenLock
room. The arm in the middle can interact with levers by either
pushing outward or pulling inward, achieved by clicking
either the outer or inner regions of the levers’ radial tracks.
Light gray levers are always locked; however, this is unknown
to agents. The door can be pushed only after being unlocked.
The green button serves as the mechanism to push on the
door. The black circle on the door indicates whether or not
the door is unlocked; locked if present, unlocked if absent.
(b) Pushing on a lever. (c) Opening the door.

causal understanding as learning stimulus-response relation-
ships through observation in classical conditioning experi-
mental paradigms (Shanks and Dickinson 1988; Rescorla
and Wagner 1972). However, more recent studies show
human understanding of causal mechanisms in the distal
world (Holyoak and Cheng 2011) is more complex than
covariation between observed (perceptual) variables; e.g.,
humans explore and experiment with dynamic physical sce-
narios to refine causal hypotheses (Bramley et al. 2018;
Stahl and Feigenson 2015).

Since the associative account, researchers have demon-
strated that humans rely heavily on the discovery of abstract
causal structure (Waldmann and Holyoak 1992) and causal
strength (Cheng 1997) to uncover causal relationships. Si-
multaneously, causal graphical models and Bayesian sta-
tistical inference have been developed to provide a gen-
eral representational framework for how causal structure
and strength are discovered (Griffiths and Tenenbaum 2005;

Figure 3.1: (a) Starting configuration of a 3-lever OpenLock room. The arm can interact

with levers by either pushing outward or pulling inward, achieved by clicking either the

outer or inner regions of the levers’ radial tracks, respectively. Light gray levers are always

locked; however, this is unknown to agents. The door can be pushed only after being

unlocked. The green button serves as the mechanism to push on the door. The black

circle on the door indicates whether or not the door is unlocked; locked if present, unlocked

if absent. (b) Pushing on a lever. (c) Opening the door. Copyright reserved to original

publication [EMQ20].

The work presented in this chapter was the result of three publications and in collabo-

ration with Colin Summers, Xiaojian Ma, James Kubricht, Siyuan Si, Brandon Rothrock,

Yixin Zhu, Hongjing Lu, and Song-Chun Zhu [EKS18, EQZ19, EMQ20]. The authors’ con-

tributions include developing the simulation environment, designing and running human ex-

periments, designing and implementing causal theory induction, designing RL experiments,

and data analysis. All other portions of the project were not completed by the author.
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3.1 OpenLock Task

The OpenLock task, originally presented in [EKS18], requires agents to “escape” from a

virtual room by unlocking and opening a door. The door is unlocked by manipulating the

levers in a particular sequence (see Fig. 3.1a). Each lever can be manipulated using the

robotic arm to push or pull on levers. Only a subset of the levers, specifically grey levers,

are involved in unlocking the door (i.e., active levers). White levers are never involved in

unlocking the door (i.e., inactive levers); however, this information is not provided to agents.

Thus, at the instance-level, agents are expected to learn that grey levers are always part of

solutions and white levers are not. Agents are also tasked with finding all solutions in the

room, instead of a single solution.

Schemas: The door locking mechanism is governed by two causal schemas: common

cause (CC) and common effect (CE). We use the terms common cause 3 (CC3) and common

effect 3 (CE3) for schemas with three levers involved in solutions, and common cause 4

(CC4) and common effect 4 (CE4) with four levers; see Fig. 3.2. Three-lever trials have

two solutions; four-lever trials have three solutions. Agents are required to find all solutions

within a specific room to ensure that they form either CC or CE schema structure; a single

solution corresponds to a causal chain.

Constraints: Agents also operate under an action-limit constraint, where only 3 actions

(referred to as an attempt) can be used to (i) push or pull on (active or inactive) levers, or (ii)

push open the door. This action-limit constraint prevents the search depth of interactions

with the environment. After 3 actions, regardless of the outcome, the attempt terminates,

and the environment resets. Regardless of whether the agent finds all solutions, agents are

also constrained to a limited number of attempts in a particular room (referred to as a trial ;

i.e., a sequence of attempts in a room, resulting in finding all the solutions or running out

of attempts). An optimal agent will use at most N + 1 attempts to complete a trial, where

N is the number of solutions in the trial. One attempt would be used to identify the role of
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Figure 2: (a) Common Cause 3 (CC3) causal structure. (b)
Common Effect 3 (CE3) causal structure. (c) Common Cause
4 (CC4) causal structure. (d) Common Effect 4 (CE4) causal
structure. L0, L1, L2 denote different locks, and D the door.

(ii) push open the door. This action-limit constraint prevents
the search depth of interactions with the environment. After
3 actions, regardless of the outcome, the attempt terminates,
and the environment resets. Regardless of whether the agent
finds all solutions, agents are also constrained to a limited
number of attempts in a particular room (referred to as a trial;
i.e., a sequence of attempts in a room, resulting in finding all
the solutions or running out of attempts). An optimal agent
will use at most N + 1 attempts to complete a trial, where N
is the number of solutions in the trial. One attempt would be
used to identify the role of every lever in the abstract schema,
and N attempts would be used for each solution.

Training: Training sessions contain only 3-lever trials.
After finishing a trial, the agent is placed in another trial (i.e.,
room) with the same underlying causal schema but with a
different arrangement of levers. If agents are forming a useful
abstraction of task structure, the knowledge they acquired
in previous trials should accelerate their ability to find all
solutions in the present and future trial.

Testing: In the transfer phase, we examine agents’ ability
to generalize the learned abstract causal schema to differ-
ent but similar environments. We use four transfer condi-
tions consisting of (i) congruent cases where the transfer
schema adopt the same structure but with an additional lever
(CE3-CE4 and CC3-CC4), and (ii) incongruent cases where
the underlying schema is changed with an additional lever
(CC3-CE4 and CE3-CC4). We compare these transfer results
against two baseline conditions (CC4 and CE4), where the
agent is trained in a sequence of 4-lever trials.

While seemingly simple, this task is unique and challeng-
ing for several reasons. First, requiring the agent to find all
solutions rather than a single solution enforces the task as a
CC or CE structure, instead of a single causal chain. Second,
transferring the agent between trials with the same underlying
causal schema but different lever positions encourages effi-
cient agents to learn an abstract representation of the causal
schema, rather than learning instance-level policies tailored
to a specific trial. We would expect agents unable to form this
abstraction to perform poorly in any transfer condition. Third,
the congruent and incongruent transfer conditions test how
well agents are able to adapt their learned knowledge to dif-
ferent but similar causal circumstances. These characteristics
of the OpenLock task present challenges for current machine
learning algorithms, especially model-free RL algorithms.

3 Causal Theory Induction
Causal theory induction provides a Bayesian account of how
hierarchical causal theories can be induced from data (Grif-
fiths and Tenenbaum 2005; 2009; Tenenbaum, Griffiths, and
Kemp 2006). The key insight is: hierarchy enables abstrac-
tion. At the highest level, a theory provides general back-
ground knowledge about a task or environment. Theories
consist of principles, principles lead to structure, and struc-
ture leads to data. The hierarchy used here is shown in Fig. 3a.
Our agent utilizes two theories to learn a model of the Open-
Lock environment: (i) an instance-level associative theory
regarding which attributes and actions induce state changes in
the environment, denoted as the bottom-up β theory, and (ii)
an abstract-level causal structure theory about which atomic
causal structures are useful for the task, denoted as the top-
down γ theory.

Notation, Definition, and Space: A hypothesis space,
ΩC , is defined over possible causal chains, c ∈ ΩC . Each
chain is defined as a tuple of subchains: c = (c0, . . . , ck),
where k is the length of the chain and each subchain is de-
fined as a tuple ci = (ai, si, cr

a
i , cr

s
i ). Each ai is an action

node that the agent can execute, si is a state node, crai is a
causal relation that defines how a state si transitions under
an action ai, and crsi is a causal relation that defines how
state si is affected by changes to the previous state, si−1.
Each si is defined by a set of time-invariant attributes, φi and
time-varying fluents, fi (Thielscher 1998; Maclaurin 1742;
Newton and Colson 1736); i.e., si = (φi, fi). Action nodes
can be directly intervened on, but state nodes cannot. This
means an agent can directly influence (i.e., execute) an ac-
tion, but how those actions affect the world must be actively
learned. The structure of the general causal chain is shown
in the uninstantiated causal chain in Fig. 3a. As an example
using Fig. 1a and the first causal chain in the causal chain
level of Fig. 3a, if the agent executes push on the upper lever,
the lower lever may transition from pulled to pushed, and the
left lever may transition from locked to unlocked.

The space of states is defined as ΩS = Ωφ×ΩF , where the
space of attributes Ωφ consists of position and color, and the
space of fluents ΩF consists of binary values for lever status
(pushed or pulled) and lever lock status (locked or unlocked).
The space of causal relations is defined as ΩCR = ΩF ×ΩF ,
capturing the possibly binary transitions between previous
fluent values and the next fluent values.

State nodes encapsulate both the time-invariant (attributes)
and time-varying (fluents) components of an object. At-
tributes are defined by low-level features (e.g., position, color,
shape, orientation). These low-level attributes provide general
background knowledge about how specific objects change
under certain actions; e.g., which levers can be pushed/pulled.

Method Overview: Our agent induces instance-level
knowledge regarding which objects (i.e., instances) can
produce causal state changes through interaction (see Sec-
tion 3.1) and simultaneously learns an abstract structural
understanding of the task (i.e., schemas; see Section 3.2).
The two learning mechanisms are combined to form a causal
theory of the environment, and the agent uses this theory to
reason about the optimal action to select based on past ex-

Figure 3.2: (a) common cause 3 (CC3) causal structure. (b) common effect 3 (CE3) causal

structure. (c) common cause 4 (CC4) causal structure. (d) common effect 4 (CE4) causal

structure. L0, L1, L2 denote different locks, and D the door. Copyright reserved to original

publication [EMQ20].

every lever in the abstract schema, and N attempts would be used for each solution.

Training: Training sessions contain only 3-lever trials. After finishing a trial, the agent

is placed in another trial (i.e., room) with the same underlying causal schema but with a

different arrangement of levers. If agents are forming a useful abstraction of task structure,

the knowledge they acquired in previous trials should accelerate their ability to find all

solutions in the present and future trials.

Transfer: In the transfer phase, we examine agents’ ability to generalize the learned

abstract causal schema to different but similar environments. We use four transfer condi-

tions consisting of (i) congruent cases where the transfer schema adopts the same structure

but with an additional lever (CE3-CE4 and CC3-CC4), and (ii) incongruent cases where

the underlying schema is changed with an additional lever (CC3-CE4 and CE3-CC4). We

compare these transfer results against two baseline conditions (CC4 and CE4), where the

agent is trained in a sequence of 4-lever trials.

While seemingly simple, this task is unique and challenging for several reasons. First,

requiring the agent to find all solutions rather than a single solution enforces the task as

a CC or CE structure, instead of a single causal chain. Second, transferring the agent be-

tween trials with the same underlying causal schema but different lever positions encourages
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efficient agents to learn an abstract representation of the causal schema, rather than learn-

ing instance-level policies tailored to a specific trial. We would expect agents unable to

form this abstraction to perform poorly in any transfer condition. Third, the congruent and

incongruent transfer conditions test how well agents are able to adapt their learned knowl-

edge to different but similar causal circumstances. These characteristics of the OpenLock

task present challenges for current machine learning algorithms, especially model-free RL

algorithms.

3.2 Causal Theory Induction

Causal theory induction provides a Bayesian account of how hierarchical causal theories

can be induced from data [GT05, GT09, TGK06]. The key insight is hierarchy enables

abstraction. At the highest level, a theory provides general background knowledge about a

task or environment. Theories consist of principles, principles lead to structure, and structure

leads to data. The hierarchy used here is shown in Fig. 3.3a. Our agent utilizes two theories

to learn a model of the OpenLock environment: (i) an instance-level associative theory

regarding which attributes and actions induce state changes in the environment, denoted

as the bottom-up β theory, and (ii) an abstract-level causal structure theory about which

atomic causal structures are useful for the task, denoted as the top-down γ theory.

Notation, Definition, and Space: A hypothesis space, ΩC , is defined over possible

causal chains, c ∈ ΩC . Each chain is defined as a tuple of subchains: c = (c0, . . . , ck), where k

is the length of the chain, and each subchain is defined as a tuple ci = (ai, si, cr
a
i , cr

s
i ). Each

ai is an action node that the agent can execute, si is a state node, crai is a causal relation

that defines how a state si transitions under an action ai, and crsi is a causal relation that

defines how state si is affected by changes to the previous state, si−1. Each si is defined

by a set of time-invariant attributes, φi and time-varying fluents, fi [Thi98, Mac42, NC36];

i.e., si = (φi, fi). Action nodes can be directly intervened on, but state nodes cannot. This

52



Atomic schema, gM
<latexit sha1_base64="6XHbOvixu7tPb7GV0mbMIIp2n/0="></latexit>

Abstract schema, gA
<latexit sha1_base64="2VFV9Pt9jJnespzriz0B7BwZjDg="></latexit>

Instantiated schema, gI
<latexit sha1_base64="+0xu7g0LUI3zgsm8YohhbUwFb24="></latexit>

Causal chain, c
<latexit sha1_base64="Bw0TJkuoQxCo8d/hRtFOLGIcpE8=">AAADZnicbVJNbxMxEHUTPkqAkoAQBy4r0koctqvsNhJckCp64Vgk0lbKRpHXmSRW/CXbSxKs/Slc4TfxD/gZ2LtBoikjrfQ84zd++2YKxaixg8Gvg1b73v0HDw8fdR4/eXr0rNt7fmVkqQmMiGRS3xTYAKMCRpZaBjdKA+YFg+tidRHq119BGyrFF7tVMOF4IeicEmx9atrtXeDSYBaRJaYijo7J8bTbHySDOqK7IN2BPtrF5bTX+pDPJCk5CEsYNmacDpSdOKwtJQyqTl4aUJis8ALGHgrMwUxcrb2KTnxmFs2l9p+wUZ39l+EwN2bLC3+TY7s0+7WQ/F9tXNr5+4mjQpUWBGkempcssjIKRkQzqoFYtvUAE0291mCCxsR6uzq3nrF09a1qUgEyWmist45gRmKrAUyspKHBUCoWMdZark1cO2pis8QKTLIAycFqSuKTTuRjBkTqegYmUV67BsUwCfT9CpdaLUOh6bTj+//VdPO3ezBIMuM1hlonF7AmknMsZi7309+apdS21lWN08n4LIwn5/WzzNUN82UhNy7XJYNxPqMcNkrnYSIBiyzLLWxsOGenSaZs7ol4M3H9tHLJUNmqarrwFWhxOuTlrl/w3JPcqHJ+M7aV45UTVd7odcO08uEXLt1fr7vgKkvSsyT7nPXPP+5W7xC9Rm/QW5Sid+gcfUKXaIQIWqPv6Af62frdPmq/bL9qrrYOdpwX6Fa0oz/rBRj1</latexit>

Causal subchain, ci
<latexit sha1_base64="4dVvWtUj7NvjrzeUPw0u9Zqzeao="></latexit>

X Y Z
<latexit sha1_base64="U9w0IzUwmyV+OexQ8FoQQRB6594="></latexit>

X

Y Z
<latexit sha1_base64="rpOxnkq0jlqf0IsuEWsMATuwg8A="></latexit>

X Y

Z
<latexit sha1_base64="FsEXwfZIn5EP9n0rInYuRnpkWXA="></latexit>

N0 N1

N2

N3
<latexit sha1_base64="xXh8qnyvL3XV+XX0zGqi+pU+fy4="></latexit>

N0

N1 N2

N3
<latexit sha1_base64="s7wIjQB/5LC5rQatY58a0d+Uofs="></latexit>

N0 N1

N2 N3

N4
<latexit sha1_base64="pXCkxt93sC8otdI0LzlVUs5EUS8="></latexit>

. . .<latexit sha1_base64="NXTVkOsAfTg5I7QIbMKKxEzGwmQ="></latexit>

upper left

lower

door
<latexit sha1_base64="S7AQN2X/L6ZOtkwIJE4l1hghrbE="></latexit>

left door

upper

lower
<latexit sha1_base64="QkPI+F2W47k+XwGvB+PhIYOpBPU="></latexit>

lower right

door

left
<latexit sha1_base64="KH1TRbQ/IsqgacvFFoRtGZiWoVs="></latexit>

. . .<latexit sha1_base64="NXTVkOsAfTg5I7QIbMKKxEzGwmQ="></latexit>

left

lower

door

push

push

push

{PL ) PH}

{PL ) PH}

{PL ) PH}

{L ) U}

{L ) U}

<latexit sha1_base64="wp/s+BACnKqC1juANGJVt/1OgW0=">AAAJ9nictVZLj9s2EFa2bRy7j2TbYy9C1wtsAFkQta8AhYugveTQwxboJgEsd0FTY5swRQokVdtR9VeKXope+3f6b0pKtix7N84iTQnYIDkz37yHGqWMKh0E/zw4+OjjTx62HrU7n372+RePnxx++VKJTBK4JoIJ+XqEFTDK4VpTzeB1KgEnIwavRrMfLP3VryAVFfxnvUxhmOAJp2NKsDZXN4cP/4hGMKE813T2JqVEZxKKTmRPSi8Z5AzGuugPMCdTIftzUHrYJEs6mTbogEt6DOMozRiDOL/6sVif1dSeX6zOTJCZOa/JGV9dXBcd16yIixgGscRzzwXGaKpg6GLtngQe8sPzp+6J0lhD8NTNIw0LrXVlavHtu8SDtSxqyoo5yHsI95rKwwZALMS75ZF/7hmhE0xs9Ju22+jcSzzwL89rBPQ+CL3A3yCEb0E4bkIQKgkDj3IO0lWQ9oNUewnlNMkSV9E30Efnqa409KyBtZVaS+tlN0qn9CbofhjwtQMGHNXg6EOBo43pYY0edrciayttVRH+peci/9SKkNLXqI7nqgUKtxuZFlwq0yAaSynmXbfBYruiiIp9+IGPSnj0/8Abl1Flf/ifFVTRX8fz1Mbm2SY2XSJvgl/UdjDLEVKnILDuXtzlbjUf9lqzHiK7Dt9SYf4v7nT5/ZTYYhuMGCYzr/fdcDOaer161OzjRA3O8G2c9cyoWYP9rOg++uspcMuA4y3eplO/rRt7HyPaMKK9jOGG0aqOgMdbj9HNkyOTsnK5tzdotTlyVuvq5vCgH8WCZAlwTRhWaoBM1w9zLDU1w8C8N5mZBMYGPIGB2XKcgBrm5VtauMfmJnbHQpof125525TIcaLUMhkZzgTrqdql2cu7aINMj58Nc8rTTAMnlaJxxlwtXPswuzGVQDRbmg0mkhpbXTLF0iTIPN+dLTU2PEV1ZbeMjiSWy5xgRjwtAZSXCkVtYimfeGX9Ks+AUa48NcUpKH8CIgEtKfGOy9zEQIQsvwmUnxrbJaQmTVZ8l5IIaSaiIVRIK3njr6SLNboNkGDK2GhpnYjDnIgkwSa1O31VDNBwcGrTEyWlWpaXgNF0JBZ5JDMGgyimCSxSGdmM2D0Pw7Ib7Tns+WGqIyOIF8P8CBW5f5aaz4AKJZmB5L2zJFvh2ZgbIfORkZvKWBZ5UuS8iCp78zNUmGUKDu2W1+3Ny9BHp374U3j0/PtV6T1yvna+cU4c5Fw6z50XzpVz7ZBWq9VrXbQu24v27+0/239VrAcPVjJfOVur/fe/Gks+Zg==</latexit>

upper

lower

door

push

push

push

{PL ) PH}

{PL ) PH}

{PL ) PH}

{L ) U}

{L ) U}

<latexit sha1_base64="HnA3xUZXGnXpIbTblPaFS3Bwlcw="></latexit>

upper

push

{PL ) PH}
<latexit sha1_base64="BsjJ1UoC2rvsU7qr940h3AuQv6A="></latexit>

lower

push

{PL ) PH}
{L ) U}

<latexit sha1_base64="DX9PIxvIBSsAYmvqYr4eabZZLRs="></latexit>

door

push{L ) U}

<latexit sha1_base64="Mr6x9OElrk4DvyT7NRzXi9/sJXo="></latexit>

p(gM ; �)
<latexit sha1_base64="lSQZE0vaY6wDmhnMQWxwR2JSvNM=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBahXkpSBQUvRS9ehAr2A9pYNttNunQ3ibubQgn9HV48KOLVH+PNf+O2zUFbHww83pthZp4Xc6a0bX9buZXVtfWN/GZha3tnd6+4f9BUUSIJbZCIR7LtYUU5C2lDM81pO5YUC4/Tlje8mfqtEZWKReGDHsfUFTgImc8I1kZy43LweHfVDbAQ+LRXLNkVewa0TJyMlCBDvVf86vYjkggaasKxUh3HjrWbYqkZ4XRS6CaKxpgMcUA7hoZYUOWms6Mn6MQofeRH0lSo0Uz9PZFiodRYeKZTYD1Qi95U/M/rJNq/dFMWxommIZkv8hOOdISmCaA+k5RoPjYEE8nMrYgMsMREm5wKJgRn8eVl0qxWnLNK9f68VLvO4sjDERxDGRy4gBrcQh0aQOAJnuEV3qyR9WK9Wx/z1pyVzRzCH1ifP70JkW0=</latexit>

p(gA; �)
<latexit sha1_base64="/wR3EEE2acAGwM7DTtidHB4s1+k=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBahXkpSBQUvVS8eK9gPaGPZbDfp0t0k7m4KJfR3ePGgiFd/jDf/jds2B219MPB4b4aZeV7MmdK2/W3lVlbX1jfym4Wt7Z3dveL+QVNFiSS0QSIeybaHFeUspA3NNKftWFIsPE5b3vB26rdGVCoWhQ96HFNX4CBkPiNYG8mNy8Hj9VU3wELg016xZFfsGdAycTJSggz1XvGr249IImioCcdKdRw71m6KpWaE00mhmygaYzLEAe0YGmJBlZvOjp6gE6P0kR9JU6FGM/X3RIqFUmPhmU6B9UAtelPxP6+TaP/STVkYJ5qGZL7ITzjSEZomgPpMUqL52BBMJDO3IjLAEhNtciqYEJzFl5dJs1pxzirV+/NS7SaLIw9HcAxlcOACanAHdWgAgSd4hld4s0bWi/Vufcxbc1Y2cwh/YH3+AKp5kWE=</latexit>

p(gI |do(q); �)
<latexit sha1_base64="2kWmEETbepqdi+vQ9FF10szEIh0=">AAAB/HicbVDLSsNAFJ34rPUV7dJNsAjtpiRVUHBTdKO7CvYBbSyTySQdOjOJMxMhxPorblwo4tYPceffOG2z0NYDFw7n3Mu993gxJVLZ9rextLyyurZe2Chubm3v7Jp7+20ZJQLhFopoJLoelJgSjluKKIq7scCQeRR3vNHlxO88YCFJxG9VGmOXwZCTgCCotDQwS3ElvLt+9KPKffW8H0LGYHVglu2aPYW1SJyclEGO5sD86vsRShjmClEoZc+xY+VmUCiCKB4X+4nEMUQjGOKephwyLN1sevzYOtKKbwWR0MWVNVV/T2SQSZkyT3cyqIZy3puI/3m9RAVnbkZ4nCjM0WxRkFBLRdYkCcsnAiNFU00gEkTfaqEhFBApnVdRh+DMv7xI2vWac1yr35yUGxd5HAVwAA5BBTjgFDTAFWiCFkAgBc/gFbwZT8aL8W58zFqXjHymBP7A+PwBT5WT5w==</latexit>

p(c|do(q); �)
<latexit sha1_base64="0y9lJws27FV2R5Fu9PD2L3ewklE=">AAAB+nicbVDLSgMxFM3UV62vqS7dBIvQbspMFRTcFN24rGAf0A4lk8m0oUlmTDJKmfZT3LhQxK1f4s6/MW1noa0HLhzOuZd77/FjRpV2nG8rt7a+sbmV3y7s7O7tH9jFw5aKEolJE0cskh0fKcKoIE1NNSOdWBLEfUba/uhm5rcfiVQ0Evd6HBOPo4GgIcVIG6lvF+MyngRR+aFy1RsgzlGlb5ecqjMHXCVuRkogQ6Nvf/WCCCecCI0ZUqrrOrH2UiQ1xYxMC71EkRjhERqQrqECcaK8dH76FJ4aJYBhJE0JDefq74kUcaXG3DedHOmhWvZm4n9eN9HhpZdSESeaCLxYFCYM6gjOcoABlQRrNjYEYUnNrRAPkURYm7QKJgR3+eVV0qpV3bNq7e68VL/O4siDY3ACysAFF6AObkEDNAEGT+AZvII3a2K9WO/Wx6I1Z2UzR+APrM8f9k2TKA==</latexit>

p(ci|do(⌧, q); �)
<latexit sha1_base64="2KvixuzZO2C5vAPNVBZ5Z1pL400=">AAACAnicbVDLSgNBEJz1GeNr1ZN4GQxCAhJ2o6DgJejFYwTzgGwIvbOzyZCZ3XVmVggxePFXvHhQxKtf4c2/cfI4aGJBQ1HVTXeXn3CmtON8WwuLS8srq5m17PrG5ta2vbNbU3EqCa2SmMey4YOinEW0qpnmtJFICsLntO73rkZ+/Z5KxeLoVvcT2hLQiVjICGgjte39JE/a7CGI856G9PiucOF1QAgo4Ladc4rOGHieuFOSQ1NU2vaXF8QkFTTShINSTddJdGsAUjPC6TDrpYomQHrQoU1DIxBUtQbjF4b4yCgBDmNpKtJ4rP6eGIBQqi980ylAd9WsNxL/85qpDs9bAxYlqaYRmSwKU451jEd54IBJSjTvGwJEMnMrJl2QQLRJLWtCcGdfnie1UtE9KZZuTnPly2kcGXSADlEeuegMldE1qqAqIugRPaNX9GY9WS/Wu/UxaV2wpjN76A+szx995pYy</latexit>

(a)
<latexit sha1_base64="wnCYp9k7ym6+w2psvUSlSiCYxy4=">AAAB8XicbVA9TwJBEJ3DL8Qv1NJmIzHBhtyhiZZEG0tMBIxwIXvLAhv29i67c0Zy4V/YWGiMrf/Gzn/jAlco+JJJXt6bycy8IJbCoOt+O7mV1bX1jfxmYWt7Z3evuH/QNFGiGW+wSEb6PqCGS6F4AwVKfh9rTsNA8lYwup76rUeujYjUHY5j7od0oERfMIpWeih3kD9hSien3WLJrbgzkGXiZaQEGerd4lenF7Ek5AqZpMa0PTdGP6UaBZN8UugkhseUjeiAty1VNOTGT2cXT8iJVXqkH2lbCslM/T2R0tCYcRjYzpDi0Cx6U/E/r51g/9JPhYoT5IrNF/UTSTAi0/dJT2jOUI4toUwLeythQ6opQxtSwYbgLb68TJrVindWqd6el2pXWRx5OIJjKIMHF1CDG6hDAxgoeIZXeHOM8+K8Ox/z1pyTzRzCHzifP06ykK0=</latexit>

Abstract-level Structure Learning
<latexit sha1_base64="+P6NMwUqgm9P9MbJAokMsZn2P6M=">AAACCnicbVA9TwJBEN3DL8Qv1NJmlZjYSO6w0BK1sbDAKB8JELK3zMGGvb3L7hwJIdQ2/hUbC42x9RfY+W9cPgoFXzLJy3szmZnnx1IYdN1vJ7W0vLK6ll7PbGxube9kd/cqJko0hzKPZKRrPjMghYIyCpRQizWw0JdQ9XvXY7/aB21EpB5wEEMzZB0lAsEZWqmVPbz0DWrG8VRCHyS9R51wTDTQW2BaCdVpZXNu3p2ALhJvRnJkhlIr+9VoRzwJQSGXzJi658bYHDKNgksYZRqJgZjxHutA3VLFQjDN4eSVET22SpsGkbalkE7U3xNDFhozCH3bGTLsmnlvLP7n1RMMLppDoeIEQfHpoiCRFCM6zoW2hQaOcmAJ41rYWynvsnEyNr2MDcGbf3mRVAp57yxfuCvkilezONLkgByRE+KRc1IkN6REyoSTR/JMXsmb8+S8OO/Ox7Q15cxm9skfOJ8/YMmasQ==</latexit>

(b)
<latexit sha1_base64="v0C1SROR1pMUbMaRK5tCQm0ofRo=">AAAB8XicbVA9TwJBEJ3DL8Qv1NJmIzHBhtyhiZZEG0tMBIxwIXvLAhv29i67c0Zy4V/YWGiMrf/Gzn/jAlco+JJJXt6bycy8IJbCoOt+O7mV1bX1jfxmYWt7Z3evuH/QNFGiGW+wSEb6PqCGS6F4AwVKfh9rTsNA8lYwup76rUeujYjUHY5j7od0oERfMIpWeih3kD9hGkxOu8WSW3FnIMvEy0gJMtS7xa9OL2JJyBUySY1pe26Mfko1Cib5pNBJDI8pG9EBb1uqaMiNn84unpATq/RIP9K2FJKZ+nsipaEx4zCwnSHFoVn0puJ/XjvB/qWfChUnyBWbL+onkmBEpu+TntCcoRxbQpkW9lbChlRThjakgg3BW3x5mTSrFe+sUr09L9WusjjycATHUAYPLqAGN1CHBjBQ8Ayv8OYY58V5dz7mrTknmzmEP3A+fwBQOJCu</latexit>

Subchain Posterior
<latexit sha1_base64="fi2GJSJl+8fbpo6NA90oGyQYvqg=">AAAB+3icbVDLSgNBEOz1GeMrxqOXwSB4CrvxoMegF48RzQOSJcxOepMhszPLzKwYQn7FiwdFvPoj3vwbJ4+DJhY0FFXddHdFqeDG+v63t7a+sbm1ndvJ7+7tHxwWjooNozLNsM6UULoVUYOCS6xbbgW2Uo00iQQ2o+HN1G8+ojZcyQc7SjFMaF/ymDNqndQtFO+ziA0ol6SmjEXNle4WSn7Zn4GskmBBSrBArVv46vQUyxKUlglqTDvwUxuOqbacCZzkO5nBlLIh7WPbUUkTNOF4dvuEnDmlR2KlXUlLZurviTFNjBklketMqB2YZW8q/ue1MxtfhWMu08yiZPNFcSaIVWQaBOlxjcyKkSOUae5uJS4ITZlLweRdCMHyy6ukUSkHF+XKXaVUvV7EkYMTOIVzCOASqnALNagDgyd4hld48ybei/fufcxb17zFzDH8gff5AxLXlHU=</latexit>

(c)
<latexit sha1_base64="3r0F2MUJfOW8aJVrYPSL1yk62qM=">AAAB8XicbVA9TwJBEJ3DL8Qv1NJmIzHBhtyhiZZEG0tMBIxwIXvLAhv29i67c0Zy4V/YWGiMrf/Gzn/jAlco+JJJXt6bycy8IJbCoOt+O7mV1bX1jfxmYWt7Z3evuH/QNFGiGW+wSEb6PqCGS6F4AwVKfh9rTsNA8lYwup76rUeujYjUHY5j7od0oERfMIpWeih3kD9hyian3WLJrbgzkGXiZaQEGerd4lenF7Ek5AqZpMa0PTdGP6UaBZN8UugkhseUjeiAty1VNOTGT2cXT8iJVXqkH2lbCslM/T2R0tCYcRjYzpDi0Cx6U/E/r51g/9JPhYoT5IrNF/UTSTAi0/dJT2jOUI4toUwLeythQ6opQxtSwYbgLb68TJrVindWqd6el2pXWRx5OIJjKIMHF1CDG6hDAxgoeIZXeHOM8+K8Ox/z1pyTzRzCHzifP1G+kK8=</latexit>

Instance-level Inductive Learning
<latexit sha1_base64="wwgu5s/VjL41ay4QR89ldzOZmwQ=">AAACCnicbVA9SwNBEN2LXzF+nVrarAbBxnAXCy2DNgYsIpgPSELY20ySJXt7x+5cIITUNv4VGwtFbP0Fdv4bNx+FJj4YeLw3w8y8IJbCoOd9O6mV1bX1jfRmZmt7Z3fP3T+omCjRHMo8kpGuBcyAFArKKFBCLdbAwkBCNejfTPzqALQRkXrAYQzNkHWV6AjO0Eot97ioDDLF4VzCACQtqnbCUQyA3gHTSqhuy816OW8Kukz8OcmSOUot96vRjngSgkIumTF134uxOWIaBZcwzjQSAzHjfdaFuqWKhWCao+krY3pqlTbtRNqWQjpVf0+MWGjMMAxsZ8iwZxa9ififV0+wc9UcCRUnCIrPFnUSSTGik1xoW2jgKIeWMK6FvZXyHtOMo00vY0PwF19eJpV8zr/I5e/z2cL1PI40OSIn5Iz45JIUyC0pkTLh5JE8k1fy5jw5L8678zFrTTnzmUPyB87nDyb9mow=</latexit>

p(ci|⇢i, do(⌧, q); �,�) / p(⇢i|ci;�)p(ci|do(⌧, q); �)
<latexit sha1_base64="g9Ak2WYNN488WRn+67eG+psVNhA="></latexit>

p(⇢i|ci;�)
<latexit sha1_base64="YEqFQoQfFBJKxbevCGS2/3+qTSE=">AAAB/HicbVDLSsNAFJ34rPUV7dLNYBHqpiRVUHBTdOOygn1AE8JkOmmHTmbCzEQIsf6KGxeKuPVD3Pk3TtsstPXAhcM593LvPWHCqNKO822trK6tb2yWtsrbO7t7+/bBYUeJVGLSxoIJ2QuRIoxy0tZUM9JLJEFxyEg3HN9M/e4DkYoKfq+zhPgxGnIaUYy0kQK7ktQ8ORIBfcQBvfJCotFpYFedujMDXCZuQaqgQCuwv7yBwGlMuMYMKdV3nUT7OZKaYkYmZS9VJEF4jIakbyhHMVF+Pjt+Ak+MMoCRkKa4hjP190SOYqWyODSdMdIjtehNxf+8fqqjSz+nPEk14Xi+KEoZ1AJOk4ADKgnWLDMEYUnNrRCPkERYm7zKJgR38eVl0mnU3bN64+682rwu4iiBI3AMasAFF6AJbkELtAEGGXgGr+DNerJerHfrY966YhUzFfAH1ucPLJyUdQ==</latexit>

p(⇢i|ai;�)
<latexit sha1_base64="ZOINPfr8eWQ9B5/FlipI3mv0o8s=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSxC3ZSkCgpuim5cVrAPaEKYTCft0MlMmJkINRZ/xY0LRdz6H+78G6dtFtp64MLhnHu5954wYVRpx/m2CkvLK6trxfXSxubW9o69u9dSIpWYNLFgQnZCpAijnDQ11Yx0EklQHDLSDofXE799T6Sigt/pUUL8GPU5jShG2kiBfZBUPDkQAX1EAb30QqLRCQzsslN1poCLxM1JGeRoBPaX1xM4jQnXmCGluq6TaD9DUlPMyLjkpYokCA9Rn3QN5Sgmys+m14/hsVF6MBLSFNdwqv6eyFCs1CgOTWeM9EDNexPxP6+b6ujCzyhPUk04ni2KUga1gJMoYI9KgjUbGYKwpOZWiAdIIqxNYCUTgjv/8iJp1aruabV2e1auX+VxFMEhOAIV4IJzUAc3oAGaAIMH8AxewZv1ZL1Y79bHrLVg5TP74A+szx+GL5Sd</latexit>

1<latexit sha1_base64="TtIgPQprnJE4HSS++PuM3etxya8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6F9Va87JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPe+uMuQ==</latexit>

grey
<latexit sha1_base64="sOLvsTR+UxzYVUnkzdX/sW+KxoQ=">AAAB9HicbVBNS8NAEN3Ur1q/qh69BIvgqSRV0GPRi8cK9gPaUDbbSbt0s4m7k2II/R1ePCji1R/jzX/jts1BWx8MPN6bYWaeHwuu0XG+rcLa+sbmVnG7tLO7t39QPjxq6ShRDJosEpHq+FSD4BKayFFAJ1ZAQ19A2x/fzvz2BJTmkXzANAYvpEPJA84oGsnrITwhYjZUkE775YpTdeawV4mbkwrJ0eiXv3qDiCUhSGSCat11nRi9jCrkTMC01Es0xJSN6RC6hkoagvay+dFT+8woAzuIlCmJ9lz9PZHRUOs09E1nSHGkl72Z+J/XTTC49jIu4wRBssWiIBE2RvYsAXvAFTAUqSGUKW5utdmIKsrQ5FQyIbjLL6+SVq3qXlRr95eV+k0eR5GckFNyTlxyRerkjjRIkzDySJ7JK3mzJtaL9W59LFoLVj5zTP7A+vwBueeSuA==</latexit>

white<latexit sha1_base64="nKwcoA8lyTNvxqfnHKNcCW2YpWM=">AAAB9XicbVDLTgJBEJz1ifhCPXqZSEw8kV000SPRi0dM5JHASmaHBibMzm5mekWy4T+8eNAYr/6LN//GAfagYCWdVKq6090VxFIYdN1vZ2V1bX1jM7eV397Z3dsvHBzWTZRoDjUeyUg3A2ZACgU1FCihGWtgYSChEQxvpn7jEbQRkbrHcQx+yPpK9ARnaKWHNsITIqajgUCYdApFt+TOQJeJl5EiyVDtFL7a3YgnISjkkhnT8twY/ZRpFFzCJN9ODMSMD1kfWpYqFoLx09nVE3pqlS7tRdqWQjpTf0+kLDRmHAa2M2Q4MIveVPzPayXYu/JToeIEQfH5ol4iKUZ0GgHtCg0c5dgSxrWwt1I+YJpxtEHlbQje4svLpF4ueeel8t1FsXKdxZEjx+SEnBGPXJIKuSVVUiOcaPJMXsmbM3JenHfnY9664mQzR+QPnM8fhWSTLA==</latexit>

1<latexit sha1_base64="TtIgPQprnJE4HSS++PuM3etxya8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6F9Va87JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPe+uMuQ==</latexit>

push
<latexit sha1_base64="ZTLkaZ952L97iqh9ne54vt5r3/Y=">AAAB9HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx4xkUcCGzI7DDBhdnad6SWSDd/hxYPGePVjvPk3DrAHBSvppFLVne6uIJbCoOt+O7m19Y3Nrfx2YWd3b/+geHjUMFGiGa+zSEa6FVDDpVC8jgIlb8Wa0zCQvBmMbmd+c8y1EZF6wEnM/ZAOlOgLRtFKfgf5EyKmcWKG026x5JbdOcgq8TJSggy1bvGr04tYEnKFTFJj2p4bo59SjYJJPi10EsNjykZ0wNuWKhpy46fzo6fkzCo90o+0LYVkrv6eSGlozCQMbGdIcWiWvZn4n9dOsH/tp0LFCXLFFov6iSQYkVkCpCc0ZygnllCmhb2VsCHVlKHNqWBD8JZfXiWNStm7KFfuL0vVmyyOPJzAKZyDB1dQhTuoQR0YPMIzvMKbM3ZenHfnY9Gac7KZY/gD5/MHx8OSwQ==</latexit>

pull
<latexit sha1_base64="Tgl++7gvsxVdFU4yiPqniSsWnkM=">AAAB9HicbVDLTgJBEJzFF+IL9ehlIjHxRHbRRI9ELx4xkUcCGzI7NDBhdnad6SWSDd/hxYPGePVjvPk3DrAHBSvppFLVne6uIJbCoOt+O7m19Y3Nrfx2YWd3b/+geHjUMFGiOdR5JCPdCpgBKRTUUaCEVqyBhYGEZjC6nfnNMWgjIvWAkxj8kA2U6AvO0Ep+B+EJEdM4kXLaLZbcsjsHXSVeRkokQ61b/Or0Ip6EoJBLZkzbc2P0U6ZRcAnTQicxEDM+YgNoW6pYCMZP50dP6ZlVerQfaVsK6Vz9PZGy0JhJGNjOkOHQLHsz8T+vnWD/2k+FihMExReL+omkGNFZArQnNHCUE0sY18LeSvmQacbR5lSwIXjLL6+SRqXsXZQr95el6k0WR56ckFNyTjxyRarkjtRInXDySJ7JK3lzxs6L8+58LFpzTjZzTP7A+fwBwy2Svg==</latexit>

1<latexit sha1_base64="TtIgPQprnJE4HSS++PuM3etxya8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6F9Va87JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPe+uMuQ==</latexit>

0
<latexit sha1_base64="9fcUy+IojPgOgVbR/skgdFCU9Gg=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/cA2lM120y7dbMLuRCyh/8KLB0W8+m+8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKzucZxwP6IDJULBKFrpoYv8CREzd9Irld2KOwNZJl5OypCj3it9dfsxSyOukElqTMdzE/QzqlEwySfFbmp4QtmIDnjHUkUjbvxsdvGEnFqlT8JY21JIZurviYxGxoyjwHZGFIdm0ZuK/3mdFMMrPxMqSZErNl8UppJgTKbvk77QnKEcW0KZFvZWwoZUU4Y2pKINwVt8eZk0qxXvvFK9uyjXrvM4CnAMJ3AGHlxCDW6hDg1goOAZXuHNMc6L8+58zFtXnHzmCP7A+fwB66WREw==</latexit>

1<latexit sha1_base64="adRpIZt3lSaNrO4CYp/+o/gyKs8=">AAAB8XicbVBNS8NAEN34WetX1aOXxSJ4KkkV9Fj04rGC/cA2lM120i7dbMLuRCyh/8KLB0W8+m+8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk41hwaPZazbATMghYIGCpTQTjSwKJDQCkY3U7/1CNqIWN3jOAE/YgMlQsEZWumhi/CEiJk36ZXKbsWdgS4TLydlkqPeK311+zFPI1DIJTOm47kJ+hnTKLiESbGbGkgYH7EBdCxVLALjZ7OLJ/TUKn0axtqWQjpTf09kLDJmHAW2M2I4NIveVPzP66QYXvmZUEmKoPh8UZhKijGdvk/7QgNHObaEcS3srZQPmWYcbUhFG4K3+PIyaVYr3nmlendRrl3ncRTIMTkhZ8Qjl6RGbkmdNAgnijyTV/LmGOfFeXc+5q0rTj5zRP7A+fwB7SqRFA==</latexit> 2<latexit sha1_base64="YtDkI+a6qDElBCOqqCQTPHmMFH0=">AAAB8XicbVBNS8NAEN34WetX1aOXxSJ4KkkV9Fj04rGC/cA2lM120i7dbMLuRCyh/8KLB0W8+m+8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk41hwaPZazbATMghYIGCpTQTjSwKJDQCkY3U7/1CNqIWN3jOAE/YgMlQsEZWumhi/CEiFl10iuV3Yo7A10mXk7KJEe9V/rq9mOeRqCQS2ZMx3MT9DOmUXAJk2I3NZAwPmID6FiqWATGz2YXT+ipVfo0jLUthXSm/p7IWGTMOApsZ8RwaBa9qfif10kxvPIzoZIUQfH5ojCVFGM6fZ/2hQaOcmwJ41rYWykfMs042pCKNgRv8eVl0qxWvPNK9e6iXLvO4yiQY3JCzohHLkmN3JI6aRBOFHkmr+TNMc6L8+58zFtXnHzmiPyB8/kD7q+RFQ==</latexit>

3
<latexit sha1_base64="BxoFW+ratr+P1gVXcCKzG1XErrE=">AAAB8XicbVDLTgJBEOzFF+IL9ehlIjHxRHbBRI9ELx4xkUeEDZkdBpgwO7uZ6TWSDX/hxYPGePVvvPk3DrAHBSvppFLVne6uIJbCoOt+O7m19Y3Nrfx2YWd3b/+geHjUNFGiGW+wSEa6HVDDpVC8gQIlb8ea0zCQvBWMb2Z+65FrIyJ1j5OY+yEdKjEQjKKVHrrInxAxrU57xZJbducgq8TLSAky1HvFr24/YknIFTJJjel4box+SjUKJvm00E0Mjykb0yHvWKpoyI2fzi+ekjOr9Mkg0rYUkrn6eyKloTGTMLCdIcWRWfZm4n9eJ8HBlZ8KFSfIFVssGiSSYERm75O+0JyhnFhCmRb2VsJGVFOGNqSCDcFbfnmVNCtlr1qu3F2UatdZHHk4gVM4Bw8uoQa3UIcGMFDwDK/w5hjnxXl3PhatOSebOYY/cD5/APA0kRY=</latexit>

4<latexit sha1_base64="v51shU1fwB6TzI111wCKhRT7bEs=">AAAB8XicbVDLTgJBEJzFF+IL9ehlIjHxRHaRRI9ELx4xkUeEDZkdGpgwO7uZ6TWSDX/hxYPGePVvvPk3DrAHBSvppFLVne6uIJbCoOt+O7m19Y3Nrfx2YWd3b/+geHjUNFGiOTR4JCPdDpgBKRQ0UKCEdqyBhYGEVjC+mfmtR9BGROoeJzH4IRsqMRCcoZUeughPiJhWp71iyS27c9BV4mWkRDLUe8Wvbj/iSQgKuWTGdDw3Rj9lGgWXMC10EwMx42M2hI6lioVg/HR+8ZSeWaVPB5G2pZDO1d8TKQuNmYSB7QwZjsyyNxP/8zoJDq78VKg4QVB8sWiQSIoRnb1P+0IDRzmxhHEt7K2Uj5hmHG1IBRuCt/zyKmlWyt5FuXJXLdWuszjy5IScknPikUtSI7ekThqEE0WeySt5c4zz4rw7H4vWnJPNHJM/cD5/APG5kRc=</latexit> 5
<latexit sha1_base64="Rt4X+Yit2Sz25C6jtIBKKecXtdo=">AAAB8XicbVDLTgJBEOzFF+IL9ehlIjHxRHZRo0eiF4+YyCPChswOA0yYnd3M9BrJhr/w4kFjvPo33vwbB9iDgpV0UqnqTndXEEth0HW/ndzK6tr6Rn6zsLW9s7tX3D9omCjRjNdZJCPdCqjhUiheR4GSt2LNaRhI3gxGN1O/+ci1EZG6x3HM/ZAOlOgLRtFKDx3kT4iYXky6xZJbdmcgy8TLSAky1LrFr04vYknIFTJJjWl7box+SjUKJvmk0EkMjykb0QFvW6poyI2fzi6ekBOr9Eg/0rYUkpn6eyKloTHjMLCdIcWhWfSm4n9eO8H+lZ8KFSfIFZsv6ieSYESm75Oe0JyhHFtCmRb2VsKGVFOGNqSCDcFbfHmZNCpl76xcuTsvVa+zOPJwBMdwCh5cQhVuoQZ1YKDgGV7hzTHOi/PufMxbc042cwh/4Hz+APM+kRg=</latexit>
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Figure 3.3: Illustration of top-down and bottom-up processes. (a) Abstract-level structure

learning hierarchy. Atomic schemas gM provide the top-level structural knowledge. Abstract

schemas gA are structures specific to a task, but not a particular environment. Instantiated

schemas gI are structures specific to a task and a particular environment. Causal chains

c are structures representing a single attempt; an abstract, uninstantiated causal chain is

also shown for notation. Each subchain ci is a structure corresponding to a single action.

(b) The subchain posterior is computed using abstract-level structure learning and instance-

level inductive learning. (c) Instance-level inductive learning. Each likelihood term is learned

from causal events, ρi. Copyright reserved to original publication [EMQ20].
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means an agent can directly influence (i.e., execute) an action, but how the action affects

the world must be actively learned. The structure of the general causal chain is shown in the

uninstantiated causal chain in Fig. 3.3a. As an example using Fig. 3.1a and the first causal

chain in the causal chain level of Fig. 3.3a, if the agent executes push on the upper lever,

the lower lever may transition from pulled to pushed, and the left lever may transition from

locked to unlocked.

The space of states is defined as ΩS = Ωφ×ΩF , where the space of attributes Ωφ consists

of position and color, and the space of fluents ΩF consists of binary values for lever status

(pushed or pulled) and lever lock status (locked or unlocked). The space of causal relations

is defined as ΩCR = ΩF × ΩF , capturing the possibly binary transitions between previous

fluent values and the next fluent values.

State nodes encapsulate both the time-invariant (attributes) and time-varying (fluents)

components of an object. Attributes are defined by low-level features (e.g ., position, color,

and orientation). These low-level attributes provide general background knowledge about

how specific objects change under certain actions; e.g ., which levers can be pushed/pulled.

Method Overview: Our agent induces instance-level knowledge regarding which ob-

jects (i.e., instances) can produce causal state changes through interaction (see Section 3.2.1)

and simultaneously learns an abstract structural understanding of the task (i.e., schemas;

see Section 3.2.2). The two learning mechanisms are combined to form a causal theory of

the environment, and the agent uses this theory to reason about the optimal action to select

based on past experiences (i.e., interventions; see Section 3.2.3). After taking an action, the

agent observes the effects and updates its model of both instance-level and abstract-level

knowledge.
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3.2.1 Instance-level Inductive Learning

The agent seeks to learn which instance-level components of the scene are associated with

causal events; i.e., we wish to learn a likelihood term to encode the probability that a causal

event will occur. We adhere to a basic yet general associative learning theory: causal relations

induce state changes in the environment, and non-causal relations do not, referred to as the

bottom-up β theory. We learn two independent components: attributes and actions, and

we assume they are independent to learn a general associative theory, rather than specific

knowledge regarding an exact causal circumstance.

We define Ωφ, the space of attributes, such as position and color, and learn which at-

tributes are associated with levers that induce state changes in the environment. Specifically,

an object is defined by its observable features; i.e., the attributes φ. We also define ΩA, a

set of actions, and learn a background likelihood over which actions are more likely to in-

duce a state change. We assume attributes and actions are independent and learn each

independently.

Our agent learns a likelihood term for each attribute φij and action ai using Dirichlet

distributions because they serve as a conjugate prior to the multinomial distribution. First,

a global Dirichlet parameterized by αG is used across all trials to encode long-term beliefs

about various environments. Upon entering a new trial, a local Dirichlet parameterized by

αL ∈ [1, 10] is initialized to kαG, where k is a normalizing factor. Such design of using a

scaled local distribution is necessary to allow αL to adapt faster than αG within one trial;

i.e., agents must adapt more rapidly to the current trial compared to across all trials. Thus,

we have a set of Dirichlet distributions to maintain beliefs: a Dirichlet for each attribute

(e.g ., position, and color) as well as a Dirichlet for actions. Similarly, we maintain a Dirichlet

distribution over each action ai to encode beliefs regarding which actions are more likely to

cause a state change, independent from any particular circumstance.

We introduce ρ to represent a causal event or observation occurring in the environment.
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Our agent wishes to assess the likelihood of a particular causal chain producing a causal

event. The agent computes this likelihood by decomposing the chain into subchains

p(ρ|c; β) =
∏
ci∈c

p(ρi|ci; β), (3.1)

where p(ρi|ci; β) is formulated as

p(ρi|ci; β) = p(ρi|φi0, . . . , φik, ai; β) (3.2)

=
p(φi0, . . . , φik, ai|ρi; β)p(ρi; β)

p(φi0, . . . , φik, ai; β)
(3.3)

=

p(ρi; β)p(ai|ρi; β)
∏

φij∈si
si∈ci

p(φij|ρi; β)

p(ai; β)
∏

φij∈si
si∈ci

p(φij; β)
(3.4)

=

p(ρi; β)p(ρi|ai;β)p(ai;β)
p(ρi;β)

∏
φij∈si
si∈ci

p(ρi|φij ;β)p(φij ;β)

p(ρi;β)

p(ai; β)
∏

φij∈si
si∈ci

p(φij; β)
(3.5)

=

p(ρi|ai; β)
∏

φij∈si
si∈ci

p(ρi|φij; β)

p(ρi; β)k
(3.6)

∝ p(ρi|ai; β)
∏
φij∈si
si∈ci

p(ρi|φij; β), (3.7)

yielding the final derivation

p(ρi|ci; β) ∝ p(ρi|ai; β)
∏
φij∈si
si∈ci

p(ρi|φij; β), (3.8)

where k is the number of attributes of the state node si in ci, and p(ρi|φij; β) and p(ρi|ai; β)

follow multinomial distributions parameterized by a sample from the attribute and action

Dirichlet distribution, respectively. We assume p(ρi; β) is uniform. Note that this derivative

is effectively a Naive Bayes approximation of the true joint distribution, p(ρi|φi0, . . . , φik, ai; β).

This scheme combines a set of attributes with a single action but can be easily extended

to include multiple actions or additional dimensions to consider for instance-level learning.

This knowledge encodes a naive Bayesian view of causal events by independently examining

how frequently attributes and actions were involved in causal events.
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Intuitively, this bottom-up associative likelihood encodes a naive Bayesian prediction of

how likely a particular subchain is to be involved with any causal event by considering how

frequently the attributes and actions have been in causal events in the past, without regard

for task structure. For example, we would expect an agent in OpenLock to learn that grey

levers move under certain circumstances and white levers never move. This instance-level

learning provides the agent with task-invariant, basic knowledge about which subchains are

more likely to produce a causal effect.

3.2.2 Abstract-level Structure Learning

In this section, we outline how the agent learns abstract schemas; these schemas are used to

encode generalized knowledge about task structure that is invariant to a specific observational

environment.

A space of atomic causal schemas, ΩgM , of causal chain, CC, and CE, serve as categories

for the Bayesian prior. The belief in each atomic schema is modeled as a multinomial

distribution, whose parameters are defined by a Dirichlet distribution. This root Dirichlet

distribution’s parameters are updated after every trial according to the top-down causal

theory γ, computed as the minimal graph edit distance between an atomic schema and

the trial’s solution structure. This process yields a prior over atomic schemas, denoted as

p(gM ; γ), and provides the prior for the top-down inference process. Such abstraction allows

agents to transfer beliefs between the abstract notions of CC and CE without considering

task-specific requirements; e.g ., 3- or 4-lever configurations.

Next, we compute the belief in abstract instantiations of the atomic schemas. These

abstract schemas share structural properties with atomic schemas but have a structure that

matches the task definition. For instance, each schema must have three subchains to account

for the 3-action limit imposed by the environment and should have N trajectories, where N

is the number of solutions in the trial. Each abstract schema is denoted as gA, and the space

of abstract schemas, denoted ΩgA , is enumerated. The belief in an abstract causal schema
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is computed as

p(gA; γ) =
∑

gM∈Ω
gM

p(gA|gM)p(gM ; γ), (3.9)

where p(gM ; γ) is the prior over atomic schemas, whose parameters are provided by the

atomic schema Dirichlet distribution. The term p(gA|gM) is computed as a exponential

distribution:

p(gA|gM) =
1

Z
exp(−D(gA, gM)), (3.10)

where D(gA, gM) is the graph edit distance between the abstract schema gA and the atomic

schema gM , and Z is the normalizing constant, Z =
∑

gA∈Ω
gA

exp(−D(gA, gM)).

The abstract structural space can be used to transfer beliefs between rooms; however,

we need to perform inference over settings of positions and colors in this trial as the agent

executes. Thus, the agent enumerates a space of instantiated schemas ΩgI , where each gI is

an instantiated schema. The agent then computes the belief in an instantiated schema as

p(gI |do(q); γ) =
∑

gA∈Ω
gA

p(gI |gA, do(q))p(gA; γ), (3.11)

where p(gI |gA, do(q)) is computed as a uniform distribution among all gI that haveD(gI , gA) =

0 (ignoring vertex labels) and contain the solutions found thus far q, and 0 elsewhere. Here,

do(q) represents the do operator [Pea09], and q represents the solutions already executed.

Conditioning on do(q) constrains the space to have instantiated solutions that contain the

solutions already discovered by the agent in this trial.

Causal chains c define the next lower level in the hierarchy, where each chain corresponds

to a single attempt. The belief in a causal chain is computed as

p(c|do(q); γ) =
∑

gI∈Ω
gI

p(c|gI , do(q))p(gI |do(q); γ), (3.12)

where p(c|gI , do(q)) is uniform across all c ∈ gI and 0 elsewhere.

Finally, the agent computes the belief in each possible subchain as

p(ci|do(τ, q); γ) =
∑
c∈ΩC

p(ci|c, do(τ, q))p(c|do(q); γ), (3.13)
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where do(τ, q) represents the intervention of performing the action sequence executed thus far

in this attempt τ , and performing all solutions found thus far q. The term p(ci|c, do(τ, q)) is

uniform across all ci ∈ c and 0 elsewhere. This hierarchical process allows the agent to learn

and reason about abstract task structure, taking into consideration the specific instantiation

of the trial, as well as the agent’s history within this trial.0

Additionally, if the agent encounters an action sequence that does not produce a causal

event, the agent prunes all chains that contain the action sequence from ΩC and prunes all

instantiated schemas that contain the corresponding chain from ΩgI . This pruning strategy

means the agent assumes the environment is deterministic and updates its theory about

which causal chains are causally plausible through interactions on the fly.

3.2.3 Intervention Selection

Our agent’s goal is to pick the action it believes has the highest chance of (i) being causally

plausible in the environment and (ii) being part of the solution to the task. We decompose

each subchain ci into its respective parts, ci = (ai, si, cr
a
i , cr

s
i ). The agent combines the

top-down and bottom-up processes into a final subchain posterior:

p(ci|ρi, do(τ, q); γ, β) ∝ p(ρi|ci; β)p(ci|do(τ, q); γ). (3.14)

Next, the agent marginalizes over causal relations and states to obtain a final, action-level

term to select interventions:

p(ai|ρi, do(τ, q); γ, β) =
∑
si∈ΩS

∑
crai ∈ΩCR

∑
crsi∈ΩCR

p(ai, si, cr
a
i , cr

s
i |ρi, do(τ, q); γ, β). (3.15)

The agent uses a model-based planner to produce action sequences capable of opening the

door (following human participant instructions in [EKS18]). The goal is defined as reaching

a particular state s∗, and the agent seeks to execute the action at to maximize the posterior

subject to the constraints that the action appears in the set of chains that satisfy the goal,

ΩC∗ = {c ∈ ΩC | s∗ ∈ c}. We define the set of actions that appear in chains satisfying the
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goal as ΩA∗ = {a ∈ ΩA|∃c ∈ ΩC∗ ,∃ s, cra, crs |(a, s, cra, crs) ∈ c}. The agent’s final planning

goal is

a∗t = arg max
ai∈ΩA∗

p(ai|ρi, do(τ, q); γ, β). (3.16)

At each time step, the agent selects the action that maximizes this planning objective and

updates its beliefs about the world as described in Section 3.2.1 and Section 3.2.2. This iter-

ative process consists of optimal decision-making based on the agent’s current understanding

of the world, followed by updating the agent’s beliefs based on the observed outcome.

3.3 Materials and Methods

Next, we illustrate experimental setups for three classes of experiments: (1) human subjects,

(2), our causal theory induction learner, and (3) reinforcement learning (RL).

3.3.1 Human Subject Experimental Setup

A total of 240 undergraduate students (170 female; mean age = 21.2) were recruited from the

University of California, Los Angeles (UCLA) Department of Psychology subject pool and

were compensated with course credit for their participation. Participants were not explicitly

told which levers were active or inactive but were instead required to learn the distinction

through trial and error. This was not generally difficult, however, as the inactive levers could

never be moved. The order in which the active levers needed to be moved followed either a

common cause (CC) or common effect (CE) schema (see Fig. 3.2), and participants were given

30 attempts to discover every solution in each situation. Participants were instructed to con-

sider solutions as “combinations” to each lock, and discovery of every solution/combination

was required to ensure that participants understood the underlying causal schema in each

situation. Participants also operated under a movement-limit constraint whereby only three

movements could be used to both (1) interact with the levers (two movements) and (2) push

open the door (one movement). If a participant tried to move an active lever in an incorrect
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order, the lever would remain stationary and a movement would be expended. Each trial

reverted to its initial state once the three movements were expended, and the experiment

automatically proceeded to the next trial after 30 attempts. The number of remaining so-

lutions and attempts were provided in a console window located on the same screen as the

OpenLock application.

In the environment, users commanded the movement of a simulated robot arm by clicking

on desired elements in a 2D display. Levers could either be pushed or pulled by clicking on

their inner or outer tracks, although pulling on a lever was never required to unlock the

door. There were either 3 or 4 active levers in each lock situation. We refer to the 3- and

4-lever common cause situations as CC3 and CC4 (Fig. 3.2(a), Fig. 3.2(b)), respectively,

and the 3- and 4-lever common effect situations as CE3 and CE4 (Fig. 3.2(c), Fig. 3.2(d)),

respectively. Note that these numbers correspond with the number of active levers. The

status of the door (i.e., either locked or unlocked) was indicated by the presence or absence

of a black circle located opposite the door’s hinge. Once the door was unlocked and the

black circle disappeared, participants could command the robot arm to push the door open

by clicking on a green push button. The robot arm consisted of five segments that were free

to rotate such that all elements in the display were easily reached by the arm’s free end; the

arm position control was implemented using inverse kinematics. Box2D [Cat11] was used

to handle collision, and the underlying simulation environment uses OpenAI Gym [BCP16]

as the virtual playground to train agents and enforce causal schemas through a finite state

machine.

Participants were randomly assigned to one of six conditions in a between-subjects ex-

perimental design (40 participants per condition) and began the experiment by viewing a

set of instructions outlining important components and details in the lock environment1.

Fifteen additional participants were recruited but subsequently removed from the analysis

due to their inability to complete any trial in the allotted number of attempts. The first

1The instructional video can be viewed at https://vimeo.com/265302423
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two experimental conditions were baselines that contained five different lock situations com-

prised of either CC4 or CE4 trials, exclusively. These baseline conditions for the two control

groups, denoted as CC4 and CE4, were included to assess whether human causal learning can

be impacted by the underlying structure, comparing learning of a common-cause structure

with learning of a common-effect structure. For the remaining four conditions, we examined

whether learning one type of causal structure can facilitate subsequent learning of a more

complex version of the same schema involving a greater number of causal variables (i.e.,

active levers). The four conditions contained six training trials with 3-lever situations, fol-

lowed by one transfer trial with a 4-lever situation. The schema underlying the 3- and 4-lever

situations was either congruent (CC3-CC4, CE3-CE4) or incongruent (CC3-CE4, CE3-CC4)

and remained the same throughout the 3-lever training trials. Participants required approx-

imately 17.4 min to complete the baseline trials and 17.3 min to complete the training and

transfer trials.

3.3.2 Causal Theory Induction Experimental Setup

The causal theory induction-based learner was run in a manner identical to the human

subjects. We executed 40 agents in each condition, matching the number of human subjects

described in Section 3.3.1. This allows us to directly compare the results of the causal theory

induction-based learner with human subject results.

3.3.3 Reinforcement Learning Experimental Setup

Given the success of model-free RL, we seek to test the limits of these models by examining

if they are capable of solving our causal generalization task. In RL experiments, we want to

answer:

1. Can predominate, state-of-the-art model-free RL algorithms solve the OpenLock task?

2. What transferable representations, if any, do these RL agents establish?
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Notice our task definition requires agents to find all solutions in a trial. This requirement

means that an agent that memorizes and biases to one specific solution will perform poorly in

unseen rooms. Agents must form abstract transferable notions of the task or must memorize

all possible settings of the task, including unseen settings, to perform well.

To answer the first question, we show the performance of model-free RL algorithms. We

try to improve their performances by providing several reward strategies. The details of

algorithms, tasks, and rewards we used can be found in Section 3.3.3.1.

To answer the second question, if the agents are able to establish such concepts, they can

master the task with similar causal schema both better and faster than training on that task

from scratch; i.e., we expect to see a positive transfer. In this experiment, all the agents

are first trained on 3-lever tasks, then we transfer these agents to target 4-lever tasks using

fine-tuning. By comparing the results in our transfer experiments with directly training on

target tasks (i.e., baseline experiments), we can verify whether the agents are able to build

such abstract casual concepts.

For RL, there a few specifics of the OpenLock environment that are pertinent. Readers

are encouraged to examine [EKS18] for additional details.

• State Space: The state space consists of 16 binary dimensions: 7 for the state of

each lever (pushed or pulled), 7 dimensions for the color of each lock (grey or white), 1

dimension for the state of the lock (locked or unlocked), and 1 dimension for the state

of the door (closed or open).

• Action Space: The action space is a discrete space with 15 dimensions: each of the

7 levers has 2 actions (push and pull), and the door has one action (push).

3.3.3.1 Algorithms, causal schemas and Rewards

We select a set of predominate, state-of-the-art RL algorithms as baselines, including deep

Q-network (DQN) [MKS15], DQN with prioritized experience replay (DQN-PE) [SQA16],
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advantage actor-critic (A2C) [MBM16], trust region policy optimization (TRPO) [SLA15],

proximal policy optimization (PPO) [SWD17] and model-agnostic meta learning (MAML) [FAL17].

Table 3.1 lists all the baselines we considered. These algorithms have been applied to solve

a variety of tasks including Atari Games [MKS15], classic control, and even complex visual-

motor skills [LPK18], and they have shown remarkable performance on these tasks when

large amounts of simulated or real-world exploration data are available.

When executing various model-free RL agents under the same experimental setup as

human learners, no meaningful learning takes place. Instead, we train RL agents by looping

through all rooms repeatedly (thereby seeing each room multiple times). Agents are also

allowed 700 attempts in each trial to find all solutions. During training, agents execute for

200 training iterations, where each iteration consists of looping through all six 3-lever trials.

During transfer, agents execute for 200 transfer iterations, where each iteration consists of

looping through all five 4-lever trials. Note that the setup for RL agents is advantageous;

in comparison, both the proposed model and human subjects are only allowed 30 attempts

(versus 700) during the training and 1 iteration (versus 200) for transfer.

RL agents operate directly on the state of the simulator encoded as a 16-dimensional

binary vector consisting of:

1. Status of each of the 7 levers (pushed or pulled),

2. Color of each of the 7 levers (grey or white),

3. Status of the door (open or closed), and

4. Status of the door lock indicator (locked or unlocked).

The 7-dimensional encoding of the status and color of each lever encodes the position of each

lever; e.g ., the 0th index corresponds to the upper-right position. Despite direct access to

the simulator’s state, RL approaches were unable to form a transferable task abstraction.

64



For baseline experiments

(To answer Q1 in Section 3.3.3)

For transfer experiments

(To answer Q2 in Section 3.3.3)

DQN on 3-lever task from scratch Fine-tune DQN on 4-lever task

DQN-PE on 3-lever task from scratch Fine-tune DQN-PE on 4-lever task

A2C on 3-lever task from scratch Fine-tune A2C on 4-lever task

TRPO on 3-lever task from scratch Fine-tune TRPO on 4-lever task

PPO on 3-lever task from scratch Fine-tune PPO on 4-lever task

MAML (Meta learning with 3 and 4-lever tasks) MAML (N shot adaption on 4-lever task)

Table 3.1: Baselines used in our experiments.

Additionally, we also include a baseline of MAML [FAL17]. Note that the MAML does

not employ a standard transfer learning setting as it requires to access the target task during

the meta-learning phase, which can be more advantageous than other transfer methods. Our

main goal is to verify whether the state-of-the-art meta-learning algorithm (i.e., MAML) can

solve the OpenLock task by forming the correct causal abstraction of the task.

A reward function that only rewards for unique solutions performed best, meaning agents

were only rewarded the first time they found a particular solution. This is similar to the

human experimental setup, under which participants were informed when they found a

solution for the first time (thereby making progress towards the goal of finding all solutions)

but were not informed they executed the same solution multiple times (thereby not making

progress towards the goal).

We utilized a plethora of reward functions to explore under what circumstances these RL

approaches may succeed. Our agents used sparse reward functions, shaped reward functions,

and conditional reward functions that encourage agents to find unique solutions. Rewards in

the OpenLock environment are very sparse; agents must search in a large space of possible

attempts (i.e. action sequences) of which there are 2 or 3 action sequences that achieve the
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task. Sparse rewards have traditionally been a challenge for RL [SB98]. To overcome this,

we enhance the reward by shaping it to provide better feedback for the agent; we introduce

task-relevant penalties and bonuses. We utilize 6 reward strategies:

Basic (B) The agent will receive a reward for unlocking the door and will receive the

largest reward for opening the door. No other rewards are granted for all other outcomes.

Unique Solution (U) Inherits from Reward B, but the agent only receives a reward when

unlocking/opening the door with a new solution. There are a finite number of solutions (2

for 3-lever trials and 3 for 4-lever trials). This reward is designed to encourage the agent to

find all solutions within a trial, instead of only finding/pursuing the first solution found.

Reward B and Negative Immovable (B+N) Inherits from Reward B, but introduces

an extra penalty for manipulating an immovable lever (Reward N). This is judged by whether

a state change occurs after executing an action; this penalty is designed to encourage the

agent to only interact with movable levers.

Reward U and Negative Immovable (U+N) This reward is a combination of Reward

U and the Negative Immovable penalty (Reward N) introduced in Reward B+N.

Reward N and Solution Multiplier (N+M) This reward inherits from Reward B, but

in this reward setting, we encourage the agent to find more solutions in a slightly different

way from Reward U. Instead of only providing reward when finishing the task with a new

solution, the agent will receive a reward every time it unlocks/opens the door, but when the

agent finds a unique solution, the reward it receives is multiplied by a fixed factor (> 1).

This effectively encourages the agent to find new solutions in a more reward-dense setting.

In addition, we also use the Negative Immovable penalty (Reward N) for learning efficiency.
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Reward N+M and Partial Sequence (N+M+P) Inherits from Rewards B, N, and

M, but adds a Partial Sequence bonus. When the executed action sequence is exactly a

prefix of a solution to the current trial (no matter whether this solution has been found out

or not), the agent will receive a bonus. This is a form of reward shaping to overcome the

sparse reward problem.

3.3.4 Hyper-parameters and Training Details

Table 3.2 presents the hyperparameters and training details for our experiments. We selected

these parameters through several preliminary experiments.

3.3.4.1 Experimental Procedure

Here we describe the complete experimental procedures for RL agents. Each agent is trained

for 200 iterations. In each iteration, there are six trials for 3-lever tasks (CC3 and CE3;

referred to as the training phase) and five for 4-lever tasks (CC4 and CC4; referred to as the

testing phase). Agents are allowed to take at most 700 attempts to find all of the solutions

within a trial. A typical trial proceeds as follows:

1. A new trial starts.

2. Agent is permitted a finite number of attempts to find all solutions. An attempt will

start from the initial state of the environment, and end with opening the door or

reaching the maximum action limit.

3. A trial ends either when all the solutions have been found or the agent reaches the

maximum attempt limit.

4. After finding all solutions or running out of attempts, the agent is placed in the next

trial with different lever configurations but the same causal schema during the training

phase.
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5. After completing all trials in the training phase, the agent is placed into a single 4-lever

trial for the testing phase.

There are six configurations in total for 3-lever tasks and five configurations for 4-lever tasks.

The configuration of the lever is selected in a loop; the initial order of the configurations is

randomized per agent, but each agent sees the same room ordering for the entire experiment.

We evaluate the final performances after all iterations are finished. The details of the

evaluation are discussed in Section 3.3.4.1.

Evaluation Details We expect an agent learning the correct abstractions and generaliza-

tions to quickly adapt to similar but slightly different circumstances. More specifically, an

agent learning the correct abstractions should perform better (i.e. have fewer attempts) as

the agent encounters more trials with the same causal schema. We propose several criteria

to evaluate agents (see supplementary of [EMQ20] for further details):

• Attempt Amount This curve shows the number of attempts used in each trial.

Because a trial terminates when all solutions have been found, an agent with better

performance will have fewer attempts per trial. Moreover, the decreasing speed of this

curve can also show how quickly the agent mastered finding all solutions.

• Percentage of Found Solution This curve shows how many solutions the agent

found within a trial, e.g ., if the agent found all the 3 solutions (for a 4-lever task), this

value will be 1 for this trial. This plot also shows how well the agent mastered find all

solutions.

• Averaged Trial Reward This curve shows the averaged reward in a trial (reward

sum divided by the number of attempts). Since the reward strategies are varied in

our experiments, this value cannot be a direct criterion to compare the performance

of various experimental settings.
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Baseline Experiments In baseline experiments, we want to evaluate the agents’ perfor-

mance on a single causal schema. The agent needs to do several trials successively. Among

these trials, the causal schema is fixed, while the lever configurations and observational so-

lutions are varied (structurally, the solutions remain the same). The goal in each trial is to

find all the solutions using as few attempts as possible. We evaluate all the 5 algorithms

(DQN, DQN-PE, A2C, TRPO and PPO) on four causal schemas, and the tabulated results

are presented in the supplementary material of [EMQ20].

In general, 3-lever tasks are easier than 4-lever tasks, because there are more solutions

to find in the latter case. Specifically, for rewards that do not encourage finding multiple

solutions, such as Reward B and N, it is quite difficult for agents to find all the solutions,

and agents are frequently biased to one specific solution. In other words, agents memorize

a single solution instead of learning the abstract, multi-solution causal schema. As for the

reward strategies that encourage finding multiple solutions, Reward U is the best for most

of the agents. In addition, for some importance sampling-based policy gradient methods

(PPO/TRPO), an extra penalty (Reward N) can slightly improve the stability and final

results.

In the Reward N+M and Reward N+M+P strategies, we introduce some reward shaping

techniques, including reward multiplier and partial sequence bonus, to mitigate the sparse

reward problem. However, the results are worse and more unstable. We posit that this

may be caused by the positive reward for non-unique solutions. Although the agents are

encouraged to find new solutions using the multiplied reward, nothing prevents agents from

being biased towards a specific solution, yielding a sub-optimal policy. To eliminate this,

we may need to adjust the learning rate dynamically as solutions are found. Thus, selecting

hyper-parameters for the last 2 reward strategies is challenging, and the results are difficult

to match expectations.

Another interesting result is the performance of value-based methods (DQN, DQN-PE).

For all causal schemas and reward strategies, these methods do not perform well under any
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of our experiments. Since the lever settings vary between trials, it is extremely difficult for

the agent to build a universal value function based on discrete state-action input [EKS18].

The causal schema remains the same, but the value function learned is not directly based

on the abstract causal state. The RL agents examined do not appear able to construct a

representation capable of inferring the connection between the explicit discrete state and the

abstract causal state.

Transfer Experiments In transfer experiments, we first train our agents in a 3-lever task

and then to a 4-lever task. We perform quantitative evaluations on the target 4-lever task for

all the transferred models. Additionally, we also compare them with the models that trained

on a 4-lever task from scratch (i.e.; baseline experiments). If the agents form useful abstract

structural representations of tasks, we expect them to complete the 4-lever task faster than

training from scratch. All five algorithms and six reward strategies are considered. The

results are listed in the supplementary material of [EMQ20].

Reward strategies that were not effective in baseline experiments were also not effective in

transfer experiments, as expected. Baseline experiments showed that policy-based methods

(A2C, PPO, TRPO) with explicit encouragement to multi-solution performed better; these

agents mastered most of the solutions. As mentioned above, if an agent is able to establish a

concept to the corresponding causal schema, it should have comparable transfer performance

regarding the performance of agent training on a 4-lever task from scratch, and it is also

expected to converge faster. However, for both CC4 and CE4 causal schemas, there is a

significant gap between transfer performance and training performance. Even under the

most effective reward strategies (Reward U, Reward U+N, and Reward N+M), the agents

find it hard to match the corresponding training performance, indicating negative transfer.
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3.4 Results

3.4.1 Human Subject and Model Results

The results using the proposed model are shown in Fig. 3.4. These results are qualitatively

and quantitatively similar to the human participant results presented in [EKS18], and starkly

different from the RL results in Section 3.4.2

Our agent does not require looping over trials multiple times; it is capable of learning and

generalizing from seeing each trial only one time. In the baseline agents, the CE4 condition

was more difficult than CC4; this trend was also observed in human participants. During

transfer, we see a similar performance as the baseline results; however, congruent cases

(transferring from the same structure with an additional lever) were easier than incongruent

cases (transferring to a different structure with an additional lever; CE4 transfer); this result

was statistically significant for CE4: t(79) = 3.0; p = 0.004. For CC4 transfer, no significance

was observed (t(79) = 0.63; p = 0.44), indicating both CC3 and CE3 obtained near-equal

performance when transferred to CC4.

These learning results are significantly different from the RL results; the proposed causal

theory-based model is capable of learning the correct abstraction using instance and struc-

tural learning schemes, showing similar trends as the human participants. It is worth noting

that RL agents were trained under highly advantageous settings. RL agents: (i) were given

more attempts per trial; and (ii) more importantly, were allowed to learn in the same trial

multiple times. In contrast, the present model learns the proper mechanisms to: (i) transfer

knowledge to structurally equivalent but observationally different scenarios (baseline exper-

iments); (ii) transfer knowledge to cases with structural differences (transfer experiments);

and (iii) do so using the same experimental setup as humans. The model achieves this by

understanding which scene components are capable of inducing state changes in the envi-

ronment while leveraging overall task structure.
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(a) (b) (c) (d)

Figure 5: Model performance vs. human performance. (a) Proposed model baseline results for CC4/CE4. We see an asymmetry
between the difficulty of CC and CE. (b) Human baseline performance (Edmonds et al. 2018). (c) Proposed model transfer results
for training in CC3/CE3. The transfer results show that transferring to an incongruent CE4 condition (i.e., different structure,
additional lever; i.e., CC3 to CE4) was more difficult than transferring to a congruent condition (i.e., same structure, additional
lever; i.e., CE3 to CE4). However, the agent did not show a significant difference in difficulty when transferring to congruent or
incongruent condition for the CC4 transfer condition. (d) Human transfer performance (Edmonds et al. 2018).

with mechanisms to learn explicit structural knowledge and
jointly optimized to learn both an abstract structural encoding
of the task while maximizing rewards. Learning such struc-
tural knowledge should not only aid in learning transferable
policies but also improve RL in hierarchical environments.
Why is CE more difficult than CC? Human participants,
RL, and the proposed model all found CE more difficult than
CC. A natural question is: why? We posit that it occurs from
a decision-tree perspective. In the CC condition, if the agent
makes a mistake on the first action, the environment will not
change, and the rest of the attempt is bound to fail. However,
should the agent choose the correct grey lever, the agent can
choose either remaining grey levers; both of which will un-
lock the door. Conversely, in the CE condition, the agent has
two grey levers to choose from in the first action; both will un-
lock the lever needed to unlock the door. However, the second
action is more ambiguous. The agent could choose the cor-
rect lever, but it could also choose the other grey lever. Such
complexity leads to more failure paths from a decision-tree
planning perspective. The CC condition receives immediate
feedback on the first action as to whether or not this plan will
fail; the CE condition, on the other hand, has more failure
pathways. We plan to investigate this property further, as this
asymmetry was unexpected and unexplored in the literature.
What other theories may be useful for learning causal
relationships? In this work, we adhere to an associative
learning theory. We adopt the theory that causal relationships
induce state changes. However, other theories may also be
appealing. For instance, the associative theory used does not
directly account for long-term relationships (delayed effects).
More complex theories could potentially account for delayed
effects; e.g., when an agent could not find a causal attribute
for a particular event, the agent could examine attributes
jointly to best explain the causal effect observed.
How can hypothesis space enumeration be avoided? Hy-
pothesis space enumeration can quickly become intractable
as problems increase in size. While this worked used a fixed,
fully enumerated hypothesis space, future work will include
examining how sampling-based approaches can be used to
iteratively generate causal hypotheses. Bramley et al. 2017

showed a Gibbs-sampling based approach; however, this sam-
pling should be guided with top-down reasoning to guide the
causal learning process by leveraging already known causal
knowledge with proposed hypotheses.
How well would model-based RL perform in this task?
Model-based RL may exhibit faster learning within a particu-
lar environment but still lacks mechanisms to form abstrac-
tion mechanisms that enable humanlike transfer. This is an
open research question, and we plan on investigating how
abstraction can be integrated with model-based RL methods.
How is this method different from hierarchical RL? Typ-
ically, hierarchical RL is defined on a hierarchy of goals,
where subgoals represent options that can be executed by a
high-level planner (Chentanez, Barto, and Singh 2005). Each
causally-plausible hypothesis can be seen as an option to exe-
cute. This work seeks to highlight the importance of leverage
causal knowledge to form a model of the world and using
said model to guide a reinforcement learner. In fact, our work
can be recast as a form of hierarchical model-based RL.

6.2 Future Work

Future work should primarily focus on how to integrate the
proposed causal learning algorithm directly with reinforce-
ment learning. An agent capable of integrating causal learn-
ing with reinforcement learning could generalize world dy-
namics (causal knowledge) and goals (rewards) to novel but
similar environments. One challenge, unaddressed in this
paper, is to how to generalize rewards to varied environ-
ments. Traditional reinforcement learning methods, such as
Q-learning, do not provide a mechanism to extrapolate in-
ternal values to similar but different states. In this work, we
showed how extrapolating causal knowledge can aid in un-
covering the causal relationships in similar environments.
Adopting a similar scheme for some form of reinforcement
learning would enable reinforcement learners to succeed in
the OpenLock task without iterating over the trials multiple
time, and could enable one-shot reinforcement learning. Fu-
ture work will also examine how a learner can iteratively
grow a causal hypothesis while incorporating a background
theory of causal relationships.

Figure 3.4: Model performance vs. human performance. (a) Proposed model baseline re-

sults for CC4/CE4. We see an asymmetry between the difficulty of CC and CE. (b) Human

baseline performance. (c) Proposed model transfer results for training in CC3/CE3. The

transfer results show that transferring to an incongruent CE4 condition (i.e., different struc-

ture, additional lever; i.e., CC3 to CE4) was more difficult than transferring to a congruent

condition (i.e., same structure, additional lever; i.e., CE3 to CE4). However, the agent did

not show a significant difference in difficulty when transferring to congruent or incongru-

ent condition for the CC4 transfer condition. (d) Human transfer performance. Copyright

reserved to original publication [EMQ20].

3.4.1.1 Model Ablation Results

In this section, we present additional results from our proposed method. Specifically, we show

how well the model performs under two ablations: (i) top-down structure learning and (ii)

bottom-up instance learning. This examination seeks to identify to what degree and how well

much each model component contributes to the model’s performance. In our formulation,

these ablations amount to setting a probability of 1 for the ablated component in the subchain

posterior; i.e., the subchain posterior reduces to the remaining active model component

(bottom-up during a top-down ablation and top-down during a bottom-up ablation).

Figure 3.5 shows the results of the ablated model. In Figure 3.5a and Figure 3.5b,

the model is ablated to disable the top-down abstract structure learning. We see the agent

performing with similar trends as the full model results, but with worse performance. This is

due to the agent learning the bottom-up associative theory regarding which instances can be
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(a) (b) (c) (d)

Figure 3.5: Results using the proposed theory-based causal transfer under ablations. (a)

Proposed model baseline results under a top-down ablation (i.e., only instance-level learning

occurred). (b) Proposed model transfer results under a top-down ablation. (c) Proposed

model baseline results under a bottom-up ablation (i.e., only abstract-level structure learning

occurred). (b) Proposed model transfer results under a bottom-up ablation. Copyright

reserved to original publication [EMQ20].

manipulated to produce a causal effect, but the agent performs worse due to the lack of task

structure. During transfer, we see little difference (with no significance; t(79) = 0.8; p = 0.42

and t(79) = 0.8; p = 0.43 for CC4 and CE4 respectively) between the training groups. This

is expected; an agent that learns no task structure should exhibit no difference between

tasks. This agent is essentially aimlessly searching the structure space, biased towards any

structure with subchains with a high likelihood of producing a causal event.

Figure 3.5c and Figure 3.5d show the model ablated with the bottom-up instance learning

disabled. In the baseline results, we see a slight increase in performance over time for

CC4; this is because the agent is becoming more confident in which structure governs the

environment. However, this version of the model has no regard for whether or not an

agent can interact with a particular instance (i.e., it lacks the bottom-up associative theory

regarding causal events). Because of this limitation, the agent must try many possible

instantiations of the correct abstract structure before finding a solution. During transfer, we

see the agent benefiting most from training in CC3, which is counter-intuitive for the CE4

transfer condition.
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Figure 3.6: RL results for baseline and transfer conditions. Baseline (no transfer) results

show the best-performing algorithms (PPO, TRPO) achieving approximately 10 and 25

attempts by the end of the baseline training for CC4 and CE4, respectively. A2C is the

only algorithm to show positive transfer; A2C performed better with training for the CC4

condition. The last 50 iterations are not shown due to the use of a smoothing function.

Copyright reserved to original publication [EMQ20].

However, we believe this is best explained from a decision tree perspective, as elaborated

in the main text. Throughout all model and human experiments, we observed that CE was

more difficult than CC. From a decision tree perspective, agents that learn a CC structure

will first identify the first lever in the structure; this is the only lever they can interact with

initially. After identifying this lever, they can then push on either remaining lever to unlock

the door. While this strategy will not work for CE directly, it may still benefit an agent

only equipped with structure learning. For instance, when applying this strategy to CE, the

agent may find the first solution faster. After finding the first solution, the space of second

solutions is constrained to contain the first solution. From here, despite having learned the

“wrong” structure for this task, the agent may find both remaining solutions faster. This is

an unexpected phenomenon and will be examined in future work.
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3.4.2 Reinforcement Learning Results

The model-free RL results, shown in Fig. 3.6, demonstrate that A2C, TRPO, and PPO are

capable of learning how to solve the OpenLock task from scratch. However, A2C in the CC4

condition is the only agent showing positive transfer; every other agent in every condition

shows negative transfer.

These results indicate that current model-free RL algorithms are capable of learning how

to achieve this task; however, the capability to transfer the learned abstract knowledge is

markedly different compared to human performance in [EKS18]. Due to the overall negative

transfer trends shown by nearly every RL agent, we conclude that these RL algorithms

cannot capture the correct abstractions to transfer knowledge between the 3-lever training

phase and the 4-lever transfer phase. Note that the RL algorithms found the CE4 condition

more difficult than CC4, a result also shown in our proposed model results and human

participants.

Empirical results of MAML Here we separately present the empirical results of MAML

since it is a meta-learning approach that does not come from the same category as other

transfer learning methods (see Table 3.1). We conduct experiments on MAML with only

the reward strategy of unique solutions (Reward U) as this strategy overall provides the

best performances. All the numerical results are presented in the supplementary material

of [EMQ20].

As the meta optimizer we use in MAML is TRPO [SLA15], we compare the adaption

results with TRPO in transfer experiments on CC4/CE4, which can be found in the sup-

plementary material of [EMQ20]. The results indicate that during the few-shot adaption

phase, MAML overall outperforms than fine-tuning policy previously learned on a 3-lever

task with TRPO, which demonstrates that the transferring, or adaption do benefit from

meta-learning from both the 3 and 4-lever tasks. However, when comparing with the oracle

baseline results that directly training on 4-lever tasks, there is still a significant performance
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gap, which indicates that the MAML agent cannot master the target tasks well. Namely,

being similar to all the fine-tuning methods, meta-learning on the previous task with the

same causal schema can improve neither the performances of subsequent policy learning on

target task nor the convergence properties but misleads the policy learning even with simi-

lar causal schema. This demonstrates that the state-of-the-art meta-learning approach also

may not be able to establish a useful concept toward the causal schemas among the tasks it

encounters during the meta-learning phase.

3.5 Conclusion and Discussion

In this chapter, we examined how humans solved a causal generalization task and showed

how the theory-based causal transfer coupled with an associative learning scheme can be

used to learn transferable structural knowledge under both observationally and structurally

varying tasks. We executed a plethora of model-free RL algorithms, none of which learned a

transferable representation of the OpenLock task, even under favorable baseline and transfer

conditions. In contrast, the proposed model results are not only capable of successfully

completing the task but also adhere closely to the human participant results in [EKS18].

These results suggest that current model-free RL methods lack the necessary learning

mechanisms to learn generalized representations in hierarchical, structured tasks. Our model

results indicate human causal transfer follows similar abstractions as those presented in this

work, namely learning abstract causal structures and learning instance-specific knowledge

that connects this particular environment to abstract structures. The model presented here

can be used in any reinforcement learning environment where: (i) the environment is gov-

erned by a causal structure, (ii) causal cues can be uncovered from interacting with objects

with observable attributes, and (iii) different circumstances share some common causal prop-

erties (structure and/or attributes).
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3.5.1 Discussion

Why is causal learning important for RL? We argue that causal knowledge provides

a succinct, well-studied, and well-developed framework for representing cause and effect

relationships. This knowledge is invariant to extrinsic rewards and can be used to accomplish

many tasks. In this work, we show that leveraging abstract causal knowledge can be used

to transfer knowledge across environments with similar structure but different observational

properties.

How can RL benefit from structured causal knowledge? Model-free RL is apt at

learning a representation to maximize a reward within simple, non-hierarchical environments

using a greedy process. Thus, current approaches do not restrict or impose learning an

abstract structural representation of the environment. RL algorithms should be augmented

with mechanisms to learn explicit structural knowledge and jointly optimized to learn both

an abstract structural encoding of the task while maximizing rewards.

Why is CE more difficult than CC? Human participants, RL, and the proposed model

all found CE more difficult than CC. A natural question is: why? We posit that it occurs

from a decision-tree perspective. In the CC condition, if the agent makes a mistake on the

first action, the environment will not change, and the rest of the attempt is bound to fail.

However, should the agent choose the correct grey lever, the agent can choose either of the

remaining grey levers; both of which will unlock the door. Conversely, in the CE condition,

the agent has two grey levers to choose from in the first action; both will unlock the lever

needed to unlock the door. However, the second action is more ambiguous. The agent could

choose the correct lever, but it could also choose the other grey lever. Such complexity

leads to more failure paths from a decision-tree planning perspective. The CC condition

receives immediate feedback on the first action as to whether or not this plan will fail; the

CE condition, on the other hand, has more failure pathways. We plan to investigate this

property further, as this asymmetry was unexpected and unexplored in the literature.
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What other theories may be useful for learning causal relationships? In this work,

we adhere to an associative learning theory. We adopt the theory that causal relationships

induce state changes. However, other theories may also be appealing. For instance, the

associative theory used does not directly account for long-term relationships (delayed effects).

More complex theories could potentially account for delayed effects; e.g ., when an agent could

not find a causal attribute for a particular event, the agent could examine attributes jointly to

best explain the causal effect observed. Prior work has examined structural analogies [HF11,

ZGJ19, ZJG19] and object mappings [FGT18] to facilitate transfer; these may also be useful

to acquire transferable causal knowledge.

How can hypothesis space enumeration be avoided? Hypothesis space enumeration

can quickly become intractable as problems increase in size. While this work used a fixed,

fully enumerated hypothesis space, future work will include examining how sampling-based

approaches can be used to iteratively generate causal hypotheses. [BDG17] showed a Gibbs-

sampling based approach; however, this sampling should be guided with top-down reasoning

to guide the causal learning process by leveraging already known causal knowledge with

proposed hypotheses.

How well would model-based RL perform in this task? Model-based RL may exhibit

faster learning within a particular environment but still lacks mechanisms to form abstrac-

tions that enable human-like transfer. This is an open research question, and we plan on

investigating how abstraction can be integrated with model-based RL methods.

How is this method different from hierarchical RL? Typically, hierarchical RL is

defined on a hierarchy of goals, where subgoals represent options that can be executed by a

high-level planner [CBS05]. Each causally plausible hypothesis can be seen as an option to

execute. This work seeks to highlight the importance of leveraging causal knowledge to form

a world model and using said model to guide a reinforcement learner. In fact, our work can

be recast as a form of hierarchical model-based RL.

Future work should primarily focus on how to integrate the proposed causal learning algo-
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rithm directly with reinforcement learning. An agent capable of integrating causal learning

with reinforcement learning could generalize world dynamics (causal knowledge) and goals

(rewards) to novel but similar environments. One challenge, not addressed in this paper, is

how to generalize rewards to varied environments. Traditional reinforcement learning meth-

ods, such as Q-learning, do not provide a mechanism to extrapolate internal values to similar

but different states. In this work, we showed how extrapolating causal knowledge can aid

in uncovering causal relationships in similar environments. Adopting a similar scheme for

some form of reinforcement learning would enable reinforcement learners to succeed in the

OpenLock task without iterating over the trials multiple times, and could enable one-shot

reinforcement learning. Future work will also examine how a learner can iteratively grow a

causal hypothesis while incorporating a background theory of causal relationships.
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Table 3.2: Hyperparameters and training details. See supplementary material of [EMQ20]

for additional details.

Parameter Value

Shared

Optimizer Adam

Learning rate 3e−4

Discount (γ) 0.99

Architecture of policy and value networks (128, 128)

Nonlinearity Tanh

Batch size 2048

L2 regularization 0.001

DQN/DQN-PE

Size of replay buffer 10000

Epsilon for exploration 0.9

Epsilon decay interval 50

Epsilon decay method exponential

Epsilon decay ending 0.05

TRPO

Maximum KL divergence 0.01

Damping 0.01

MAML

Meta optimizer TRPO
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CHAPTER 4

Explanation in Communicative Learning

In the past decade, machine learning has tackled many problems with noisy real-world in-

puts with impressive performance, fueled by large datasets. Much of this advancement has

been due to uninterpretable, black-box systems. Meanwhile, the community has realized

the necessity of machine interpretability [ZZ18, ZNZ18] for safety-critical applications. In-

trinsically, most of the existing models are not designed to simultaneously maximize both

the performance and explainability [GA19], resulting in a need for a trade-off between the

performance and explainability. This trade-off often leads to a debate between the black-box

models vs the white-box models: Models with high performance usually lack explainabil-

ity, whereas models with relatively high explainability often perform poorly in real-world

scenarios.

Recent trends in neural-symbolic approaches [YWG18, MGK18, LHH20, PMS16] refute

the above need for the trade-off; a hybrid model could possess high performance in com-

plex reasoning tasks while maintaining relatively high interpretability. Significantly, a robot

system presented in Chapter 2 has recently demonstrated the efficacy of such an approach

using a large-scale, between-subject study [EGL19]. The finding echoes the above conclusion:

Forms of explanation that are best suited to foster trust do not necessarily correspond to

the model components contributing to the best task performance; by integrating model com-

ponents to enhance both task execution and human trust, a machine system could achieve

both high task performance and high human trust. Crucially, it also shows that the means

of delivering explanations matters: Providing high-level summaries is not sufficient to foster
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human trust. Such explanations should not be decoupled from the participants’ observations

of the robot’s task execution.

Despite the above progress, existing systems demonstrating specific levels of explanations

are still rudimentary in terms of the forms of explanations. Existing systems mostly empha-

size hierarchical decompositions (either spatial or temporal) of the systems’ inner decision-

making process, either by visualizing the saliency/attention maps of deep neural network’s

layers [ZNZ18, ZZ18, AWZ20, ZWW20], or by tracing top-down/bottom-up process of the

graph/tree structures [LZS18, EGL19, EQZ19, EMQ20, ZRH20, ZZZ20]. Thus, the explana-

tions and interpretability are primarily machine-centric; the process only unfolds the model

for a human user to probe or inspect. Critically, human users’ active interactions or inputs

with the systems rarely change the behavior of the machine’s decision-making process, and

the machine’s responses are primarily based on pre-computed and stored information. We

call this the passive machine—active human paradigm, wherein an active human user may

query the state of the machine to passively acquire explainable information.

We argue that human-machine teaming should follow a different and more user-friendly

paradigm, which we call the active machine–active human [QLZ20] paradigm. In such a

new paradigm, the machine would adopt the human user’s input and change its behavior in

real-time so that the system and the human user would cooperatively achieve a common task.

Hence, such a cooperation-oriented human-machine teaming would require the machine to

possess a certain level of theory of mind (ToM): A machine would behave like a human agent

to actively infer the human user’s belief, desire, and goals [YLF20, GGZ20]. The system’s

design is no longer limited to display its decision-making process, but further to understand

human’s needs to cooperate, therefore forming a human-centric process. Critically, the

essence to establish such a cooperation lies in the shared agency [TSZ20, SZZ20] or common

mind [Tom10].

Motivated to build an XAI system with the aforementioned characteristics capable of un-

derstanding human user’s beliefs, design, and goals, we move from conventional explanation
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tasks on function approximation (e.g ., classification) to tasks involving sequential decision-

making. These decision-making tasks include extensive human-machine teaming, dealing

with complex constraints over problems intractable to the human’s inferential capabilities.

By resolving the discrepancy between robot and human expectations and mental models,

we hope the XAI system will assist the human user to discover the provenance of various

artifacts of a system’s decision-making process over long-term interactions even as the phys-

ical world evolves [GA19, CSK20]. We believe this research direction is the prerequisite for

generic human-machine teaming.

The work presented in this chapter was completed in collaboration with Luyao Yuan,

Xiaofeng Gao, Zilong Zhen, Yixin Zhu, Hongjing Lu, and Song-Chun Zhu. The authors’

contributions include developing the simulation environment, designing and running human

experiments, and data analysis. All other portions of the project were not completed by the

author.

4.1 Scout Exploration Task

We devise a human-machine teaming system presented as a collaborative game, in which the

human user needs to work together with a group of robot scouts to accomplish some tasks

and optimize the group gain. In this game, the human user and robot scouts communicate

on a constrained channel: Only the robot team directly interacts with the physical world;

the human user does not directly access the physical world or direct control over robot

scouts’ behavior. Meanwhile, only the human user has access to the ground-truth value

function that encodes human preferences about how the task should be completed (e.g .,

minimize overall time); the robot team has to infer this value function through human-

machine teaming. Such a setting realistically mimics real-world human-machine teaming

tasks, as many systems perform autonomously in dangerous settings under human users’

supervision where preferences are challenging, if not impossible to encode.
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The XAI system is expected to provide appropriate explanations to justify its behaviors

and gain human user’s trust and reliance. This process is achieved by actively inferring the

human user’s mental model (i.e., value and utility as the instantiation of the belief, desire,

and goals) during the game. Therefore, the system’s explanation generation is a bidirectional

dialogue framework: The XAI system needs to both “speak” and “listen”—explaining what

it has done and plans to do based on its inference of the human user’s value and utility. In

the meantime, the human user is tasked to command robot scouts to reach the destination

while maximizing the team’s score. Hence, the human user’s evaluation of the XAI system is

also a bidirectional process: The human user has to infer the goal of robot scouts and check if

it aligns with the given value function of the task. Ultimately, if the XAI system works well,

the robot scout value function should align well with the ground-truth value function given

only to the human user, and the human user should gain high trust from the XAI system.

Our methodology studies XAI in a full-blown communication system, a combination of

theory-of-mind, communicative learning, value-alignment, and causal reasoning for effective

explanation generation.

Our design encourages natural human-machine teaming and bidirectional reasoning as

both parties have crucial but private information at the beginning of the game. The robot

scouts possess information about the map but lack access to the human user’s value function,

which determines mission goals, hindering the robot scouts’ ability to make proper decisions

that reflect the human user’s intent. Meanwhile, the human user, who knows the task’s value

function that governs the decision-making process, lacks direct access to the environment.

By allowing constrained communication to fulfill human-machine collaboration, the robot

scouts can make sporadic action proposals to the human user, and the human user provides

a binary accept or reject feedback, and the robot scouts use that feedback to infer the human

user’s value function and adjust their behaviors accordingly. Based on adjusted behavior,

the human user will provide ratings for the trust and reliance of the XAI system. In our

setting, the communication’s main purpose is to align the value function between the human
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user and the robot scouts. For a fast alignment, the robot scouts need to know when and

how to make proposals, such that feedback from the user is most informative to estimate

the value function correctly. To obtain instructive feedback from the human user, the robot

scouts must establish a shared agency or common mind—what the human user knows and

believes, what the human user intends to do, and what are aligned and misaligned. Only

based on this shared agency could the robot scouts provide explanations that properly justify

previous actions and current proposals.

Besides the value alignment process, our design also involves estimation of human user’s

utility, i.e., the human user’s preference of the forms of explanations. In contrast to the

objective value function given to the human user, this utility-driven human user’s preference

is subjective and more likely to be individually different. We argue that a properly modeling

of such an individual difference plays a crucial role in gaining human trust and reliance. The

human user’s value function and utility together form the human user’s mental state.

Our collaborative game, Robot Scout Exploration Game, has a minimal design and in-

volves one human commander and three robot scouts. The game’s objective is to find a safe

path on an unknown map from the base (located at the bottom right corner of the map) to

the destination (located at the upper left corner of the map). The map is represented as a

partially observed 20 × 20 tile board, with each tile potentially holding one of the various

devices and remain unobserved until a robot scout moves close enough to observe (reveal)

the tile’s contents.

We define a set of goals for the robot scouts to pursue as they find the path to reach

the destination, including (i) saving time used to reach the destination, (ii) investigating

suspicious devices on the map, and (iii) exploring tiles, and (iv) collecting resources. The

game’s performance is measured by the accomplishment of these goals by the robot scouts

and their relative importance (weights), defined as the human user’s value function. Again,

this value function is only revealed to the human user, not the robot scouts.

One comparable but different setting to our human-machine teaming framework is the
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Figure 4.1: Algorithmic flow of the computational model.

inverse RL [AD21]. Inverse RL aims to recover an underlying reward function given pre-

recorded expert demonstrations in a passive learning setting. In contrast, the agent (the

collective form of all robot scouts) in our system is designed to learn interactively from scarce

supervisions given by the human user. Crucially, our design requires the agent to actively

infer the human user’s mental model (value and utility) to accomplish a task cooperatively, a

unique proper of human-centric learning scheme. In a nutshell, the agent is tasked to perform

value-alignment by inferring the human user’s mental model, actively make proposals, and

evaluate the human user’s feedback, requiring complex and recursive mind modeling of the

human user.

4.2 Communicative Learning with Theory-of Mind

In this section, we provide an overview of the game flow and the corresponding computational

model. Throughout the chapter, we use R and H to denote the robot scouts and the

human user, respectively. θ encodes the parameters of the value function, s is the physical

state, b(·) is the belief over latent variables, x = (bs, bθ, bυ) is the mental state (value and

utility) of the human user, and m is the message used for human-machine communication.

BU stands for the belief update sub-processes, where BU1 is on the physical state, and
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Algorithm 1: High-level game flow.

1 Set t = 1, initialize st, agent’s mental state xR0 ;

2 while stop condition is not satisfied do

3 ot ∼ O(st) // collect observation from the environment

4 x̂Rt = BU1(xRt−1, ot) // update belief given observation

5 mR
t ∼ λR(x̂Rt ) // generate message (proposal & explanation) to the

user

6 xRt = BU2(x̂Rt−1,m
R
t ,m

H
t ) // update belief given user feedback

7 aRt ∼ π(xRt ) // agent’s policy

8 st+1 ∼ T (st, a
R
t ) // state transition

9 t = t+ 1

10 end

BU2 is on the value function. λR manages the generation of the messages to the user,

including proposal and various modes of explanations. Other notations (o, t, O, T, and π)

follow standard partially observable Markov decision process (POMDP) [SV10] definitions;

see Table 4.1 for a summary of the notations.

Every round of the game starts with the robot scouts receiving observations from the

environment and making a task plan based on their current mental state. Next, they send

messages (proposals and/or explanations) to the human commander for feedback. The feed-

back is used to make final movement plans to execute for this round and then the scouts

execute the plans. A high-level game flow is sketched in Algorithm 1, and the computation

pipeline for one round of human-machine teaming is shown in Fig. 4.1. Because the game

directly displays the most probable map information to the human user, we assume the com-

munication from the agent to the human user is noise-free. After laying out the formulation

of the agent policy (see Section 4.2.1), we focus on how the agent updates belief over human

user’s value function (BU2) (see Section 4.2.2) and how the communication messages are
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generated (λR) (see Section 4.2.3).

4.2.1 Agent Policy

Suppose the robot scouts already know about the human user’s value function, the game

simplifies to a POMDP setting, solvable by planning-based methods [SV10]. Let τi denote

the plan proposed by the i-th scout and τ = {τ1, ..., τK} as the complete plan of the scout

group, where K is the number of scouts in the group. When constructing a plan, the scouts

Table 4.1: Notation used in the computational model.

Notation Description Remark Notation Description Remark

s ∈ S Physical State N/A mE ∈ME Robot’s explanation N/A

o ∈ O Observation N/A mP ∈MP Robot’s proposal T ⊂MP

t ∈ T Time Step N/A mR ∈MR Robot’s message mR = (mP ,mE)

θ ∈ Θ Human’s value

function

N/A fb ∈ FB Proposal feedback mH(fb) ∈
{0, 1}K

υ ∈ Υ Human’s utility

function

N/A ss ∈ SS Satisfactory Score SS ⊂ Z+

aR Joint action of all

scouts

aR = (aR1 , ..., a
R
K) mH ∈MH Human’s message mH = (fb, ss)

b Belief over hidden

variables

b(·) means the belief function λR Robot’s communica-

tion policy

XR ×MR −→
[0, 1]

xR ∈ XR Robot’s mental

state

xR = (b(s), b(θ), b(υ))

T Physical State

Transition Model

S ×AR × S −→ [0, 1]

π Agent Policy XR ×AR −→ [0, 1]

τ ∈ T Group motion

plan

T = (AR ×O)∗

τi means the i−th scout’s

plan. τi ∈ τ .
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utilize the following policy:

τ ∗ = arg max
τ

E
s∼b(s),θ∼b(θ)

[θTf(τ, s)] = arg max
τ

E
s∼b(s)

[f(τ, s)]T E
θ∼b(θ)

[θ]

≈ arg max
τ

θ̄T
( 1

NS

NS∑
n=1

f(τ, sn)
)

= arg max
τ

θ̄Tf(τ),

(4.1)

where f(τ, s) is the fluent [NC36] when the game terminates given the state s and the scouts’

plan τ , and the above equation takes the hard-max for plan selection. Given the dynamics

of the game, f can be forward simulated in our planner, such that the expectation of f(τ, s)

can be approximated using Monte Carlo methods with state samples. Instead of computing

the full distribution, the agent only needs to keep track of the mean of the belief over human

user’s value function as we are using a linear model to calculate the gain of the game; we

use θ̄ to denote the mean of b(θ). We can use the Boltzman rationality model to convert the

planning problem described in Eq. (4.1) to a stochastic process, i.e.:

p(τ ; θ̄) =
exp (β1θ̄

Tf(τ))∑
τ ′∈T exp (β1θ̄Tf(τ ′))

, (4.2)

where β1 ≥ 0. This conversion facilitates the inference of the human user’s value function

by enabling gradient-based optimization methods to learn θ̄. After a plan τ is determined,

the joint action of all robot scouts is the first action of the plan, aR = (τ1[0], . . . , τK [0]).

4.2.2 Value Function Estimation by Modeling ToM

The human user’s value function is unknown to the scouts and has to be learned through

interaction, raising challenges for classic POMDP solvers. To estimate the human user’s

value function during the communication process, we integrated ToM into our computa-

tion model and developed a closed-form learning algorithm. Our algorithm leverages the

assumption that, given a cooperative human user, the accepted plans are more likely to have

a performance advantage over the rejected ones.
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4.2.2.1 Belief Update with Level-1 ToM

We use mH(fb) to denote the human user’s feedback, which is a binary code with the i-th

bit indicating the acceptance or rejection of the proposal from the i-th scout. Assuming the

human user is following the above decision-making process, the likelihood function of human

user’s feedback is:

p(mH(fb)|τ ; θ̄) =
K∏
i=1

p(τi; θ̄)
mH(fb)i(1− p(τi; θ̄))(1−mH(fb)i), (4.3)

where p(τi; θ̄) =
∑

τ∈T ,τi∈τ p(τ ; θ̄). Given this likelihood function, we can learn the mean

of the parameter of value function θ̄, following the maximum likelihood estimation (MLE)

derivation by maximizing log p(mH(fb)|τ ; θ̄) w.r.t. θ̄. Because θ̄ > 0 and ‖θ̄‖1 = 1, this MLE

process can be calculated by the projected stochastic gradient ascent algorithm [Nes03],

yielding a closed-form derivation for ∂ log p(mH(fb)|τ̂ ;θ̄)

∂θ̄
:

∂ log p(mH(fb)|τ̂ ; θ̄)

∂θ̄
= β1

K∑
i=1

[
1(mH(fb)i = 1)

( ∑
τ∈T τ̂i∈τ

exp (β1θ̄
Tf(τ))∑

τ ′∈T ,τ̂i∈τ ′ exp (β1θ̄Tf(τ ′))
f(τ)

)
+

1(mH(fb)i = 0)
( ∑
τ∈T τ̂i /∈τ

exp (β1θ̄
Tf(τ))∑

τ ′∈T ,τ̂i /∈τ ′ exp (β1θ̄Tf(τ ′))
f(τ)

)
− E

τ∼p(τ ;θ̄)
[f(τ)]

]
,

(4.4)

where the two indicator functions select which summation to take conditioned on the feed-

back of the i−th proposal. The summation over weighted fluents, despite the overwhelming

form, can be interpreted as the expected fluents in accord to the accepted/rejected plans. The

intuition of this gradient is the difference between the expected fluents from plans without

the accept/rejected proposals and the expected fluents from all the plans.

4.2.2.2 Belief Update with Level-2 ToM

The above belief update mechanism assumes the human user will provide feedback to the

proposals based on the intrinsic value of the proposals, i.e., the expected return of the

proposed plans given the underlying parameters of the value function. However, this is
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unlikely to be the case, as completely rational agents do not exist. Thus, we need to properly

model level-2 ToM: With the explanation generated by the XAI system (see Section 4.2.3

for details), we further assume that the human user will be cooperative and provide feedback

to best accelerate the parameter learning. Suppose the human user provides feedback based

on the improvement brought by the feedback, we have

q(mH(fb)|θ∗, θ̄, τ) =
exp (−β2‖θ̄ + ηt

∂ log p(mH(fb)|τ ;θ̄)

∂θ̄
− θ∗‖2)∑

m̂H(fb)∈FB exp (−β2‖θ̄ + ηt
∂ log p(m̂H(fb)|τ ;θ̄)

∂θ̄
− θ∗‖2)

, (4.5)

where β2 ≥ 0 controls the extremeness of the softmin, ηt is the learning rate at time t,

and θ∗ is the ground-truth parameters of the value function possessed by the human user.

The intuition of this equation is: The feedback from the human user is sampled from a

softmin distribution of the distance between the updated parameters given the feedback

and the ground-truth parameters. The smaller the distance is, the larger the improvement

brought by that feedback, and the larger the improvement is, the more likely the feedback

is provided. Further analysis of the above distance can be found in [LDL18]. Here, we use a

softmin instead of hardmin in the data selection process. Integrating this feedback function

into our parameter learning algorithm, we can derive a new parameter update function:

θ̄t+1 = θ̄t + ηtg
(
mH(fb)

)
+ 2β2η

2
t

(
g
(
mH(fb)

)
− E

m(fb)∼q(θ∗,θ̄t,τ)

[
g
(
m(fb)

)])
, (4.6)

where g
(
m(fb)

)
= log p(m(fb)|τ ;θ̄t)

∂θ̄
. The first two terms are the same as the level-1 belief

update, whereas the third term grasps the message’s context by comparing the selected

message against the also-runs and leverages the advantage to further update the belief.

Notice that θ∗ is unknown to the agent, so q in the expectation dose not have an exact

solution. Thus, we use θ̄t + ηtg
(
mH(fb)

)
as an approximation of θ∗. That is, we first

calculate level-1 ToM update on the parameters of the value function, then we take an

additional gradient ascent step for level-2 ToM update.
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4.2.2.3 Proposal Generation

The XAI system generates proposals in accord to the change of expected belief. At each step,

the agent first computes a new θ̄′m for each m ∈MH . Next, the change of expected belief can

be calculated by δ(τ, θ̄) = Em∼p(mH |τ,θ̄)[‖θ̄′m− θ̄‖2] for each τ ∈ T . If maxτ∈T δ(τ, θ̄) surpasses

a given threshold, the robot scouts make a proposal with arg maxτ δ(τ, θ̄). This formulation

is generic; we can also substitute in other measurement (e.g ., the expected variance of the

θ̄′) in terms of the change of expected belief to generate more diverse update.

4.2.3 Explanation Generation by Modeling Mental Utility

We generate explanations alongside proposals to aid the human user to make decisions.

Given trajectories produced by the planner, the explainer aims to generate human-like ex-

planations that not only provide sufficient information but also match the human user’s

language preferences, i.e., the mental utility.

Formally, an explanation is defined by its semantic inputs and a set of syntactic rules.

The former is to provide explanations regarding what, including the current observation o,

physical state s, and belief over the value function b(θ). The latter is to provide explanations

regarding how. The explainer model is to determine the optimal syntax that matches the

human user’s mental utility. Specifically, we predefine a set of attributed templates; these

templates provide the basis of an explanation and are filled in according to relevant attributes.

At each step, the explainer predicts the human user’s most favorable attributes based on

the satisfactory score. We propose a sequential explanation generation model capable of

adopting the temporal dynamics of the human’s mental state; it defines utility functions to

synthesize the most efficient and suitable explanations.
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Figure 4.2: Temporal evolution of explanation generation as a function of t.

4.2.3.1 Sequential Explanation Generation

At time step t, the explainer takes in a tuple ht = {(mE
t−1, sst−1, ot)} as input, where mE

t−1 ∈
ME is the explanation of previous round, sst−1 ∈ SS is user’s satisfactory score estimated by

human user’s feedback of the previous round, and ot ∈ O is the current observation. Given

the sequential input history Ht = {hk, k = 1, ..., t}, the explanation objective is to generate

an explanation mE
t that maximizes the expected score:

mE
t = arg max

mE∈ME

Eŝs∼p(ss|Ht)[ŝs(a
E)]− λccost(mE), (4.7)

where aE ∈ AE is an extracted attribute vector of mE, cost(·) a pre-defined cost function,

and λc a constant factor.

We model the process of computing E[ŝs(aE)] as a hidden Markov model (HMM) by

introducing a mental state variable υ ∈ Υ, which corresponds to the human user’s mental

utility of the explanation; see Fig. 4.2 for the graphical illustration of the computing process.

At time step t, we compute the expected score as:

Eŝs∼p(ss|Ht)[ŝs(a
E)] =

∑
ss∈SS

p(ss|aE, ss1:t−1, o1:t, a
E
1:t−1)ss

=
∑
ss∈SS

(∑
υt∈υ

p(υt|ss1:t−1, a
E
1:t−1, o1:t)p(ss|υt, aE)

)
ss.

(4.8)
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Algorithm 2: Explanation Generation

Input : templates - all explanation templates

Output: {mE
1 ,m

E
2 , ...}

1 t← 1

2 while not stopped do

3 explanations ← FillSlots(templates)

4 Get Ot, sst−1 from agent

5 mE ← None

6 for mE
i in explanations do

7 aE ← ExtractAttribute(mE
i )

8 Compute E[ŝs(aE)] according to Eq. (4.11).

9 mE ← arg max{mE ,mE
i }

E[ŝs(aE)]− cost(mE)

10 end

11 mE
t ← mE, t← t+ 1

12 end

Let K(aEt−1, ot) = p(υt|υt−1, a
E
t−1, ot) be the transition matrix that encodes the transition

probability from mental states υt−1 to υt, and F(aE) = p(ss|υt, aE) be the score function

that models the distribution of satisfaction scores. We have:

p(υt|ss1:t−1, e1:t−1, o1:t) =
∑
υt−1∈υ

p(υt−1|ss1:t−1, a
E
1:t−1, o1:t−1)K(aEt−1, ot), (4.9)

where p(υt|ss1:t, a
E
1:t, o1:t) = αt is computed by an iterative process:

p(υt|ss1:t, a
E
1:t, o1:t) ∝ F(aEt )�

(
K(aEt−1, ot)

Tp(υt−1|ss1:t−1, a
E
1:t−1, o1:t−1)

)
= F(aEt )�

(
K(aEt−1, ot)

Tαt−1

)
,

(4.10)

where � is an element-wise product operator. Therefore, Eq. (4.8) can be written as

Eŝs∼p(ss|Ht)[ŝs(a
E)] =

∑
ss∈SS

ss

Z
αTt K(aEt−1, ot)F(e), (4.11)

where Z is a normalization constant of p(ss|Ht); see Algorithm 2 for the computational flow.
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4.2.4 Explanation with Ontogenetic Ritualization

Literature in evolutionary anthropology demonstrates strong evidence that early infants

learn to communicate, especially in a symbolic manner, not based on imitation but rather

on an individual learning process termed ontogenetic ritualization [MN12, Tom10, Loc80].

[TC97] argue such communicative behavior as a communicative signal that can be formed

by two individuals shaping each other’s behavior in repeated instances of interaction over

time. Similar phenomena have also been observed and investigated on other primates, such

as great apes [HRT13, Tom96]. For example, many individual chimpanzees come to use a

stylized “arm-raise” to indicate that they are about to hit the other and thus initiate play

[TC97]. In this way, a behavior that was not at first a communicative signal would become

one over time. Generally, we follow [TZ02] to define the process of ontogenetic ritualization:

(i) individual A performs behavior X; (ii) individual B reacts consistently with behavior Y ;

(iii) based on the initial steps of X, B anticipates A’s performance of X, and hence performs

Y ; and finally, (iv) A anticipates B’s anticipation of X, and hence produces X in ritualized

form so as to elicit Y .

We argue that the process of ontogenetic ritualization can also be formed during human-

robot teaming, specifically when understanding and reacting to explanations. To achieve

this goal, we set the “ritualized form” as a subset of explanation attributes AE. As such, the

computational model described here allows robot scouts to generate ritualized explanation

based on their anticipation of human feedback, i.e. E[ŝs(aE)].

4.3 Human Subject Experiments

4.3.1 Participants Description

Participants for this study were recruited from the online Prolific user research platform.

Participants were selected based on their location (in the United States), their highest level
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of education (at least a bachelor’s degree), and the device they were using (no mobile users

were selected). This choice was made to confine our participants to a population that is more

likely to understand the nuance of the game while maintaining a broad pool of participants

who are representative of the general population. A desktop/laptop computer was required

to interact with the game appropriately. Information on the participant’s computer was

collected (i.e. User-Agent). No other demographic information from the participant was

collected after passing our demographic selection criteria.

After participants finished the introductory material, a 7-question familiarity test was

given to participants before proceeding into the game. This check was to make sure partici-

pants understood the rules of the game, what their objectives were, how to interpret value

functions and the distinction between explanations and proposals. Participants passed the

questionnaire if they answered every question correctly. If a participant missed a question,

a page was shown to explain the correct answer. Participants who missed a question had to

repeat the entire questionnaire, and participants who failed to pass the questionnaire twice

were removed from the study.

Participants were assigned randomly to each condition and were balanced automatically

by our survey platform (Qualtrics). Compensation started at $10 USD per participant, and

our scoring system incentivized participants to score as many points as possible. Participants

received $0.05 USD per point in the game, with a maximum total payout of $20 USD per

participant.

4.3.2 Study Design

The study was conducted in a between-subject design. Participants were randomized in a

hierarchical group selection process: an outer hierarchy and an inner hierarchy; see Fig. 4.3.

The outer hierarchy was randomized to assign participants evenly based on mental model

questions: (i) value function and (ii) behavior prediction. The inner hierarchy was ran-

domized to evenly assign participants based on different explanation formats: (i) a proposal
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Figure 4.3: User study flow. (a) Participants begin with an introduction to explain the setting

and define key terms. (b) Participants are then familiarized with the game interfaces, and

a questionnaire is given to verify participants understand the game. Participants that did

not pass the familiarization were removed from the study. (c) Participants are randomly

split into two groups: a group that is asked to infer the robot scout’s current value function

and a group that is asked to predict the robot scout’s next behavior. This is done in

a between-subject design. (d) Participants are further randomly split to receive different

forms of explanations: proposals, explanations, and ritualized explanations. This is done

in a between-subject design. (e) The participants then play the game and are asked the

question assigned to their group throughout the experiment. (f) After finishing the game,

participants were asked qualitative trust and explanation satisfaction questions.

group, (ii) an explanation group, and (iii) a ritualized explanation group. Among three

groups, the robot scouts will follow the exact same action policy, π, and belief update process,

BU . The groups differ only by the explanations forms received by the human participant,

λR, and the question about the robot scouts’ plan (current vs next round).

Our study includes four variables. The only independent variable is the form of the

explanation a participant received: proposal, explanation, or ritualized explanation. Three

dependent variables are (i) value function alignment, (ii) behavior prediction, and (iii) qual-
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itative trust and explanation satisfaction. To ensure no confounding on order or effects from

answering a question regarding value function prediction and behavior prediction, the study

was designed with the above outer hierarchy using a between-subject design. Participants

from all groups were asked to provide qualitative trust and explanation satisfaction responses

throughout the game.

The general study procedure was identical for all subject groups. Participants were first

introduced with background information on tasks. Specifically, the participants were tasked

to behave as a commander to guide a group of robot scouts to move from bottom right to

upper left on the map while collecting resources. They were informed about the information

asymmetry: They know about the group-truth value function, but they have no direct access

to the environment; only the robot scouts can directly interact with the environment but have

no access to the value function. Participants were informed to work cooperatively with the

scouts to achieve a high score, and they would be compensated more with a high score. Next,

participants were presented with the game interface, with a focus on functions and operations

on various panels. Depending on their group, participants received instructions that only

cover the panels presented in their group. By the end of the introduction, participants were

challenged with questions. Participants who did not answer these questions correctly were

removed from the study.

In Fig. 4.3, we outline the flow of the experiment to give a high-level overview of the

participant’s experience through the game. The figure shows our between-subject design

across our two mental model questions (value function and behavior prediction) and our

explanation formats (proposal, explanation, and ritualized).

The introduction phase of the experiment introduces the basic background of the game.

The introduction outlines that the participants are commanders in charge of finding a path

from the lower-right-hand corner of the map to the upper-left-hand corner of the map. The

introduction outlines that the area may have dangerous devices, such as bombs, along the

path. Participants are told they have a team of robot scouts to help explore the area, and
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that the scouts will provide proposals (and in explanation groups, explanations).

During familiarization, participants are instructed that while their objective is to get to

the upper-left corner, they are also instructed there are sub-goals the team would benefit from

achieving. These sub-goals consist of time, area explored, number of bombs investigated,

and resources collected. Participants are then informed that these goals are specific to the

team’s current circumstance and the value function conveys the relative importance of these

sub-goals. Participants are informed they will be scored, and this score is weighted by the

value function. Finally, the robot scout proposals and explanations are described. Proposals

correspond to robot scout plans, and explanations attempt to justify those plans. These

various components are introduced using figures of the panels shown in Fig. 4.4.

To test the participant’s understanding of the background, the participant is given several

attention check questions at the end of familiarization. For example, we asked “for each

trial, you will be given a value function that describes the team’s current mission priorities”

(correct answer: true). Participants who answered a question incorrectly would receive

instruction as to why the correct answer is correct and would be required to repeat the

attention check. Participants who failed the attention check twice did not further participate

in the study.

We implemented this game using HaxeFlixel, a 2D Game Engine used to create JavaScript-

based games. Participants can access the game on web browsers. The full user interface of the

game is displayed in Fig. 4.4. Throughout the study, the participant monitors the progress

of the team, receives explanations, and gives feedback by accepting or rejecting the propos-

als. The team’s performance is quantified as a score, which reflects how well the scouts can

estimate the participant’s value function and act accordingly. Participants are instructed to

maximize the team’s score. The score is weighted by the value function to score the relative

importance of sub-goals. Each sub-goal score is computed from the environment’s reward

function.

During the game, the robot scouts attempt to infer the human value function. To infer

99



Figure 4.4: User interface of the scout exploration game. Moving from left to right, the

Legend panel displays a permanent legend for the participant to refer to understand different

tile types. The Value Function panel shows the value function of the participant’s team, is

unknown to the robot scouts, and cannot be modified by the participant. The central map

shows the current information on the map. The Score panel shows the participant’s current

score and the individual fluent functions that contribute to the score. The overall score is

calculated as the normalized, value function-weighted sum of the individual fluent function

scores. The Status panel displays the current status of the system. The Proposal panel

shows the robot scouts’ current proposals, and the participant can accept/reject each. The

Explanation panel shows explanations provided by the scouts.

the correct value function, the robot team proposes action plans to the participant and

estimates the value function based on the participant’s feedback. Explanations accompany

the proposals to clarify the motivation of the robot scouts. An example proposal is: “We

can keep moving despite the suspicious area (proposal) if we want to find a path from A

to B as soon as possible (explanation).” If the participant accepts this proposal, the robots

will increase the value of time in the value function. Otherwise, the robots will increase the

value of investigating bombs and tile exploration but decrease the value of time. The game

repeats in a loop, where robot scouts make proposals (and in some groups, explain), execute

100



(a) Value function question interface

Scout1
What subgoal do you believe 


 will pursue next? Scout2
What subgoal do you believe 


 will pursue next?

Search for bombs
Collect Resources
Explore the area

Search for the goal
Search for bombs
Collect Resources
Explore the area

Search for the goal
Search for bombs
Collect Resources
Explore the area

Search for the goal

Scout3
What subgoal do you believe 


 will pursue next?

(b) Behavior prediction question interface

Figure 4.5: Example interfaces for the value function question and the behavior prediction

question. (a) Participants can slide the bars to set a relative importance of each sub-goal.

The sub-goals must sum to 100%. As the participant changes one slider, the others will

automatically decrease to keep the sum at 100%. Participants can lock a particular slider

by checking the lock symbol to the right of the slider. (b) Participants are asked to predict

which sub-goal the robot scouts will pursue next. Participants are asked to predict the

sub-goal for each scout individually; this is because proposals are generated on a per-scout

basis.

plans, and repropose until they find a path to the upper-left-hand corner of the map.

Our between-subject design is divided by the question type that will be asked during

the experiment (value function or behavior prediction) or and by the explanation format

displayed to the participant (proposal, explanation, or ritualized). Participants are asked

the dependent measure question before the robot scouts start the next round of explanation

and proposing. The value function question asks participants to provide the value function

they believe the robot scouts are using. Participants provide their rating by manipulating a

set of sliders that are interdependent; the slides must always sum to 100%. This provides the

relative importance of sub-goals. For the behavior prediction question, participants are asked

to predict what proposal the robot scouts will make next. Note that this is a between-subject

design, so participants will see one question but not the other.

For the explanation format displayed, participants in the proposal group will see only
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robot scout proposals (see Proposal Panel in Fig. 4.4), while participants in the explanation

group will see robot scout proposals and explanations (see Explanation Panel in Fig. 4.4).

The ritualized group is identical to the explanation group, except that robot scouts actively

attempt to ritualize explanations based on the shared common mind between the robot

scouts and the participant.

After the participants finish the game, they are directed to a post-experiment survey

to evaluate qualitative trust and explanation satisfaction. Self-reported trust is evaluated

using Likert-scale questions, which are designed based on Muir’s questionnaire [Mui94] and

Madsen’s Human-Computer Trust Instrument [MG00]. The questionnaire intends to evalu-

ate how the information given to the participants across different groups helps them make

appropriate decisions when they are asked to give feedback on the proposals. Such appro-

priate reliance [LS04] is supported by a correct understanding of multiple components of

the system, including the planning, value function estimation, proposal generation, feedback

interpretation, and/or explanation generation, which form the basis of trust. Specifically,

the trust questionnaire comprises questions that intend to evaluate the perceived reliability,

technical competence, and understand-ability of the scouts with respect to these components.

We ask the participants “how much would you trust the robot scouts to achieve a high score

on their own, given they have the correct value function?” and “how much do you trust the

robot scouts to learn the value function of another commander in another circumstance?”.

Explanation satisfaction is evaluated in the aspects of transparency, helpfulness, and

timeliness via Likert-scale questions to reflect the participant’s belief regarding how well the

explanation has helped them understand these components and make correct feedback to

guide the team towards plans that are better suited to the scenario and value function given

to the participants.
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4.3.3 Hypotheses

The hypotheses we are testing in this experiment are related to quantitative measures for

mental model alignment and qualitative measures relating to trust and explanation satisfac-

tion. The quantitative measures for mental model alignment include: (H1 ) value function

alignment, (H2 ) behavior prediction, and (H3 ) user-machine task performance. For value

function alignment (H1 ), we hypothesize that groups that have access to explanations will be

more accurate inferring the current robot scout value function. For the behavior prediction

(H2 ), we hypothesize that groups that have access to explanations will be more accurate in

predicting what the robot scouts will do next. The user-machine task performance (H3 ) will

be evaluated by the score participants receive from the game.

Our qualitative measures will assess trust by asking participants whether they would trust

the robot scouts to complete the task on their own, given they have the correct value function.

Additionally, we will ask participants whether they trust the scout to learn a different value

function with a different commander. We hypothesize that groups that have access to richer

explanations will rate the qualitative trust measures higher than those without (H4 ). Our

second qualitative hypothesis (H5 ) is that groups with access to richer explanations will

report higher degrees of explanation satisfaction.

4.4 Results

The experiments for this chapter are ongoing, though expected results and initial results will

be presented here. Our primary measures of significance will be using a student’s t-test and

analysis of variance (ANOVA) using the F -test. We expect to see the following significances

for each hypothesis:

• H1 : Significance between proposal and explanation group. Significance between pro-

posal and ritualized explanation group. No significance between explanation and ritu-

alized explanation group.
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• H2 : Significance between proposal and explanation group. Significance between pro-

posal and ritualized explanation group. No significance between explanation and ritu-

alized explanation group.

• H3 : Significance between proposal and explanation group. Significance between pro-

posal and ritualized explanation group. No significance between explanation and ritu-

alized explanation group.

• H4 : Significance between proposal and explanation group. Significance between pro-

posal and ritualized explanation group. Significance between explanation and ritualized

explanation group.

• H5 : Significance between proposal and explanation group. Significance between pro-

posal and ritualized explanation group. Significance between explanation and ritualized

explanation group.

We believe for H1 and H2, we will observe significance between the proposal and explana-

tion group. This is predominately due to the richer explanations providing a deeper insight

into the robot scout’s reasoning process, allowing better inference of the mental state of

the robot scouts. The same applies between the proposal and ritualized explanation group.

We do not expect to see a significance between the explanation and ritualized explanation

for these hypotheses because these two forms of explanation convey similar information in

different forms (ritualized being an abridged version of the full explanation based on the

common mind between the human and the robot scouts).

For H3 and H4, we believe to see significance between all groups. Between the proposal

and explanation group, we believe the transparency and insight provided by the explana-

tions will improve trust and satisfaction ratings. Furthermore, between the explanation and

ritualized explanation group, we predict the ritualization will further improve trust and sat-

isfaction ratings, as the ritualization conveys a deeper understanding of the shared common

mind between the human and the robot scouts.

Fig. 4.6 shows that scouts are better able to estimate the ground-truth value function
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Figure 4.6: Scout value function vs. ground truth value function, measured by L2 distance

between the scout value function vector and the ground truth value function vector. The

explanation group (exp) achieves better performance than the proposal group (prop) as

the game progresses. The percent indicates how far into the game the participant is when

prompted to estimate the scout’s value function. N=35.

used in the explanation group, confirming our H1 hypothesis that value function alignment

will perform better in groups that have access to explanations. At the final step (100%), we

observe t = −2.64, p = 0.01, indicating a significant difference between the performance of

the explanation group compared with the proposal group. Significance is also seen at 40%,

50%, 60%, 70%, and 90%.

4.5 Conclusion and Discussion

In this study, we looked at a unique XAI paradigm, namely an active machine–active human

paradigm wherein both the machine and the human are active participants in the explanation
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process. This contrasts to more traditional XAI studies that use a passive machine—active

human paradigm wherein the machine provides an explanation that a human user inter-

prets, with no engagement from the human back to the machine. To achieve this paradigm,

we adopt a communicative learning framework based on theory of mind (ToM) where the

machine actively reasons about human user’s mental states. This communicative learning

paradigm generates explanations that help build a common mind between the user and

machine, thereby allowing the machine to perform the task better.

We constructed a Robot Scout Exploration Game, where a team of robot scouts explores

a dangerous area, looking for a safe path for the commander’s team to cross the area. The

team has sub-goals, such as minimizing the amount of time or investigating devices that

may be bombs. The robot scouts provide information to the commander from their sensing

capabilities, along with proposals on what the scouts plan to do next and explanations for

those proposals. The commander can then accept or reject the proposals, thereby providing

feedback to the scouts on the utility of a proposal. The robot scouts then use this feedback

to estimate the commander’s intents and goals to improve future proposals and explanations.

This iterative communication process continues until the team completes the task (finding

a safe path to reach the destination).

The user study presented here quantitatively assesses the degree to which different forms

of explanation improve mental model understanding between the user and the machine and

qualitatively assess user-machine trust and explanation satisfaction. While final results are

forthcoming, we expect that access to richer forms of explanation will improve the mental

model understanding and user-machine task performance. Additionally, we expect richer

forms of explanations to foster more trust and improve explanation satisfaction. Of note, we

anticipate that these scores will be the highest in a ritualized explanation group, where the

machine shortens explanations as the user and machine establish a common mind.

This study aims to present an unexplored active machine–active human paradigm where

both the human and the machine actively participate in the explanation process. We be-
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lieve this opens a new venue for future interactive XAI studies that showcase collaborative

environments between users and machines.
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CHAPTER 5

Conclusion

In this dissertation, we examined how an agent can learn generalizable knowledge from

observations and interventions. The work presented here attempts to answer fundamental

questions about the components necessary for generalization and explanation. We examined

using a temporal And-Or graph (T-AOG), a haptic neural network, a hierarchical Bayesian

model, and reinforcement learning (RL) to learn generalizable representations. We found

that these models can complement each other (T-AOG and haptic neural network), perform

well in generalization tasks on their own (hierarchical Bayesian model), and are not able

to generalize effectively (model-free RL). We also explored concepts related to generaliza-

tion and transfer, such as explainability, to examine the interplay between generalization

performance and explanatory performance.

In Chapter 2, we showcased an imitation learning task where a robot learned how to open

medicine bottles using two different forms of imitation: a temporal And-Or graph (T-AOG)

to encode symbolic, long-term task structure and a haptic network to enable the robot to

imitate the poses and forces of the human demonstrator. The two modeling components

were combined using the generalized Earley parser (GEP), yielding a highly capable learner.

Additionally, these model components can produce explanations, and we examined how

each modeling component fostered human trust. The T-AOG contributed most to fostering

human trust, but the combined GEP model performed best at the bottle opening task. This

divergence shows a need to consider both task performance and explanation simultaneously

to construct a capable performer and a capable explainer.
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In Chapter 3, the OpenLock task tested agents’ ability to form abstract causal structures

and apply them to observationally different but structurally similar situations. Human

subjects showed a remarkable ability to form these abstract causal structures and apply them

to situations with similar but different structure. Model-free reinforcement learning (RL)

was unable to form these causal structures and apply them, even under favorable training

conditions. A hierarchical Bayesian learner, based on causal theory induction [GT09], showed

similar learning trends as human learners. The hierarchical Bayesian learner used a top-down

hypothesis space generation scheme to explore the space of possible causal structures while

bottom-up, instance-level learning guiding the learner to focus on features that were likely

to produce a causal effect. The combination of these two mechanisms produced a highly

capable learner, suggesting that causal learning in interactive domains benefits from both

structural abstraction and feature-level inductive biases.

In Chapter 4, we presented a task that requires two agents communicate to share knowl-

edge (observations) or preferences (values). A human user collaborated with a team of robots

to achieve the goal. In this setting, the need for explanation arises from each agent having

partial information that must be communicated to the other agent. The communicative

learning framework presented shows robot scouts capable of using feedback from a human

user to properly align their internal value with the human’s value and make plans in accor-

dance with the inferred values. Value alignment is critical for the future of human-robot

teaming; aligning values between humans and robots is required to foster trust and enable

human-robot teaming in daily life.

Moving forward, AI and robots must be capable of explaining themselves and constructing

causal representations to generalize effectively. While this dissertation made progress towards

these goals, there are still many unanswered questions around what constitutes an effective

explanation, how different modeling components can generate explanations, efficient causal

hypotheses spaces generation in large-scale tasks, and effective inductive biases to accelerate

the causal learning process.
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