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Brain Machine Interface Using Emotiv EPOC To
Control Robai Cyton Robotic Arm

Daniel Prince, Mark Edmonds, Andrew Sutter, Matthew Cusumano, Wenjie Lu, and Vijayan Asari
Department of Electrical and Computer Engineering
University Of Dayton, Dayton, Ohio

Abstract—The initial framework for an electroencephalogra-
phy (EEG) thought recognition software suite is developed, built,
and tested. This suite is designed to recognize human thoughts
and pair them to actions for controlling a robotic arm. Raw
EEG brain activity data is collected using an Emotiv EPOC
headset. The EEG data is processed through linear discriminant
analysis (LDA), where an intended action is identified. The EEG
classification suite is being developed to increase the number of
distinct actions that can be identified compared to the Emotiv
recognition software. The EEG classifier was able to correctly
distinguish between two separate physical movements. Future
goals for this research include recognition of more gestures, and
enabling of real time processing.

I. INTRODUCTION

The work presented here is a continuation of ongoing
research in the University of Dayton’s Vision Lab that utilizes
the Emotiv EPOC for use in various capacities for testing the
feasibility of low cost applications for EEG signal processing
[1], [2]. While previous work from the group involves op-
timizing Emotiv’s own software suite for use in processing
EEG signals for controlling a robotic arm, this paper presents
the development of an original EEG signal processing suite.
The signal processing suite shares the same goal as previous
work of enabling disabled people to regain a level of autonomy
through the control of a robotic arm using EEG signals from
the user as an input. Figure 1 illustrates the stages in this
system.

The BMI system includes separate phases for recording
signals, extracting features, classifying the features, and send-
ing control to the robotic arm. During the recording phase,
the subject’s brain signals are collected and encoded into
a computer-readable format. The classification phase then
removes noise and classifies the thought appropriately. The
controlling phase sends a classified action to the robotic arm.

The BMI system uses EEG to collect the brain signals.
EEG is a non-invasive technique that offers high temporal
resolution, portability, and low cost. Other methods that could
have been chosen for collecting brain signals include functional
Magnetic Resonance Imaging (fMRI) and invasive systems [3],
[4]. fMRI offers high spatial resolution, but the system is very
expensive and not portable. Likewise, the invasive systems
involve implanting sensors into the subject’s brain or using a
needle to pierce the subject’s scalp. Besides the discomfort of
the subject, the system is not practical for quick or widespread
use.

One of the most commercially viable and versatile EEG
recording devices is the Emotiv EPOC headset. This EEG
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Fig. 1. EEG Signal Processing Steps

Fig. 2. The Emotiv EPOC EEG headset

system offers a wide range of benefits from being market
affordable to high-resolution, multichannel, and wireless EEG
data acquisition. The headset comes with software detection
suites that can detect the user’s emotional state, facial ex-
pressions through electromyography (EMG), and user trained
mental commands. Using a low-cost headset like the EPOC
means research advancements can be deployed to a large
number of users. The Emotiv EPOC headset used in this
experiment is shown in Figure 2.

Figure 3 shows the robotic arm used, the Robai Cyton Veta.
The Veta has 7 degrees of freedom, making its range of motion
comparable to the human arm. The robot has suction cups on
the bottom to secure it to the surface it is functioning on and it
has safety mechanisms so that the arm does not over-rotate or
hyper extend and cause damage to itself. The control software
was provided by Robai and modified in this research.

Several researchers have developed Brain Computer Inter-
faces (BCI) to encode brain data for various applications [5]-
[11]. We extensively studied various aspects in order to select
the most effective for our application. Many techniques were
found to be effective in processing EEG signals including the
P300 potential [5], [6], and an approach using support vector
machines that out performs Emotiv’s own EPOC Control Panel
[7]. These works constitute a solid foundation of research to
build a EEG classifier for the Emotiv EPOC. Other generalized
feature extraction techniques such as linear feature extraction
and principal component analysis were considered, but linear
discriminant analysis was selected as the primary feature ex-
traction technique for this research due to its relative simplicity



Fig. 3. The Robai Cyton Veta robotic arm

and effectiveness [12], [13].

While much previous work also uses the Emotiv EPOC,
we believed there was room for significant improvement.
This research is aimed at constructing another EEG classifier
that outperforms previous implementations using the EPOC
headset.

II. SYSTEM DESIGN
A. Data Collection

The design of the classifier began by collecting various
gestures using the Emotiv headset and Emotiv’s provided
Testbench application. The Testbench records live input of
EEG signals from the user wearing the headset for later
processing and classification. Every data collection period was
approximately two minutes long, where a user was to focus on
using a single physical gesture at every five second interval.
Initially, we planned to collect a number of short, single
actions. However, the Testbench requires that each recorded
session be at least ten seconds long in order for it to save the
data properly. Using the recording timer shown in the Emotiv
Testbench, the user kept track of their own gesture timing. A
separate facilitator would click the mouse to begin the data
recording when the user was prepared and end the testing
session after two minutes. By holding the gesture for one to
two seconds, a relatively short period of time, the test data
showed the signature of the EEG signals as the user transitions
between the neutral state, and either the left or right gesture.
For each of the gestures, the user was seated in front of the
computer used to run the Emotiv Testbench software and was
given a single class of gesture to use for the session. The
different classes of gestures are described as the following:

Left: The subject moves his or her left index and left thumb
as close together as possible without touching them together,
holding that position for 1 to 2 seconds.

Right: The subject moves his or her right index and left
thumb as close together as possible without touching them
together, holding that position for 1 to 2 seconds.

Neutral: The subject remains calm and still for the duration
of the two minute collection session

The index finger touching gesture was selected based on
the small amount of physical movement involved, but also
the strong mental sensation that is created from holding the
two fingers close together but not touching them. The testing
subjects were encouraged to remain still for the length of the
two minute collection session, but a small number of additional
movements over all of the sessions did occur, presenting
additional noise in the collected signals.

The data collected from the Emotiv Testbench was ini-
tially saved to the Emotiv proprietary .edf format. Emotiv’s
EDFConverterConsole command line application converts the
.edf files to a comma separated value format, which can
easily be read with Matlab. In order to automate the use of
EDFConverterConsole, a Windows batch file was created to
recursively converts all collected .edf files to comma separated
value files. Since each gesture occurred at five second intervals,
five second windows were created that plotted each gesture
impulse in the center. An example of this plot is shown in
Figure 4. A Matlab matrix was constructed that organizes
the individual samples for each headset node for each data
collection session in order to further process this information.

B. Gesture Classification

Linear discriminant analysis (LDA) is a method that can
be used to show the distance between a given data set’s
relationship to a “signal” class that is identified, versus a
“noise” class that represents all data outside the desired set
[13]. This kind of analysis was used to separate right or left
gestures from the neutral gestures that represent random EEG
signals from the user.

At this phase in the research work, the EEG classification
system can not automatically locate time period of a single
recorded gesture, so the analysis process begins by visually
locating an impulse from the collected data to use in analysis.
Matrix indices are manually selected in order to align multiple
instances of the same gesture that is being used as the “signal”
class. Following the alignment of the gestures, the input signals
are downsampled by a factor of 50 in order to reduce the
complexity of the data in them before either being used to
create the discriminant via (1), or being used to compute a
data set’s relationship between the two classes represented by
the classifying vector via (2) and (3).

Linear discriminant analysis was used to classify the
gestures from the recorded data. This process allows for
dimensionality reduction as well as a distinction between the
signal that is being searched for and the noise that it is being
separated from. Equation (1) shows the calculation used to
create the discriminant.

w= (X0 +21) — (11 — po) (1

Where X, represents the covariance matrices for each class,
1; represents the mean vector for each class, and w represents
the discriminant used to compute the separation between the
two classes, class 1 represents the right gesture, and class 0
represents the neutral gesture. Following the computation of
the discriminant, it may be used to compute whether an input
data set more closely correlates to one of the classes of data
used to create the classifier. The computation needed to show



Five second data excerpt from each channel: time in seconds, amplitude in microvolts
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Fig. 4. Example of the signals collected from the Emotiv headset

whether a given data set more closely represents one of the
classes used to create the classifier in (1) is shown in (2) and

Q).

N =wN @3]

fr=wR 3)

Where N and R are data sets representing aligned and
downsampled neutral and right gestures respectively, w repre-
sents the discriminant used to compute the separation between
the two classes, and fy and fg are the output functions, where
a higher value indicates a correlation towards the right gesture,
and a lower value indicates a correlation towards the neutral
gesture.

III. RESULTS

The EEG classification system successfully distinguished
between two separate sets of actions: right and neutral, and
left and neutral. Figure 4 shows an example of a single five
second interval that contains signals collected using the EPOC
headset, where each subplot shows the signal detected at each
of the fourteen nodes of the headset.

Figure 5 shows an example of the gesture signature used
to visually identify when a gesture occurred. The red bordered
boxes were drawn in this plot show that impulses related to
the gesture can be seen clearly on channels 1, 2, 3, 4, and 14.
Because these channels consistently show a visible impulse
near the times when gestures should occur, they were selected
to be used as the best channels in the creation and processing
for the signal classifier.

In Figures 6 and 7, the raw headset data for a right gesture
and a neutral gesture are shown following the manual selection
of matrix indices that allow for a visual alignment of the
impulse in the center of the right gesture. In these figures,
each different color line represents a different section of the
session that has been aligned within the five second window
shown, with nine sections of five seconds in length shown in
each figure simultaneously. The neutral gestures are mostly
uncorrelated, while the right gestures all feature a significant
impulse at the center of the window. This simultaneous impulse
occurring on many different channels will be the defining
feature that the classifier uses to represent the right gesture.

Five second data excerpt from each channel: time in seconds, amplitude in microvolts
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gestures tested
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Following the manual sample alignment, each data set is
then downsampled by a factor of 50 to create signals that
represent the same trends, but with less complex data. The
downsampled versions of the same neutral and right gestures
from headset channel 1 are shown in Figures 8 and 9.

In Figure 10, an example output from the LDA classifi-
cation is shown. A threshold value of 40% of the difference
between the lowest and highest scoring values is plotted to
separate the right gestures, which occur above the threshold,
and the neutral gestures, which occur below the threshold. Note
that in this specific scenario, the two gestures are separated at
nearly 100% accuracy, even though the classifier was computed
from a different user than the test data being classified. This
result proves that the EEG signals proved by the tested gestures
are consistent between different users.
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IV. CONCLUSION

The EEG classifier successfully classified two separate sets
of distinct gestures. As the results indicate, the classification
accuracy of the best channels between two classes is 100%,
even when using a discriminant value resulting from EEG
data recorded from a different user. The system is highly
successful with several given conditions: the gesture indices
and the optimal channels need to be identified manually in
offline processing, and a maximum of two classes can be
distinguished at once.

Our ongoing work includes customizing the EEG classi-
fication system to the requirements needed for assistance in
operating a robotic arm. Now that an offline signal processing
system has been designed, it can be adjusted for use in real
time gesture classification.

As part of future work, we are experimenting with holding
each gesture for a longer period of time to increase the clarity
of the resulting EEG data. We are also developing an algorithm
that can automatically locate the time when a gesture candidate
occurs. An approach that uses LDA to distinguish between
more than two classes of gestures will also be required in
order to enable a more sophisticated level of communication
from the user to the robotic system that is being controlled.
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