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Abstract—This paper describes the acceleration of the 

declarative knowledge retrieval system of a cognitive architecture, 
namely ACT-R. The core of ACT-R’s retrieval mechanism, 
activation calculation, is accelerated through leveraging the speed 
of C++ and the MapReduce program model. Work described in 
this paper represents an extension of previous Erlang-based 
concurrent activation. ACT-R’s retrieval process is re-examined 
and optimized in this solution. Concurrency available in the 
execution platform is exploited to maximize the acceleration of 
declarative retrieval. The resulting implementation, referred to as 
Accelerated Declarative Memory (ADM), presents a high-
performance activation calculation that enables practical use of 
more massive declarative memories. ADM presents new 
mechanisms to access and traverse declarative memory to reduce 
the overhead of executing retrievals. This solution offers retrieval 
latencies 20 times faster than the previous Erlang solution. 

Keywords—ACT-R; declarative memory; semantic networks; 
MapReduce; parallel activation calculation. 

1. Introduction 
Cognitive architectures attempt to computationally 

describe the functional structure of the human mind. They 
link the structure of the brain to the function of the mind [1]. 
The declarative memory module of the ACT-R cognitive 
architecture gives agents the ability to recall factual 
information from their past [1]. A growing number of 
researchers in the cognitive architectures community are 
investigating ways to increase the capacity and performance 
of declarative retrieval systems [2]-[6]. Seeking to extend 
the practicality of existing associative retrieval mechanisms, 
these researchers are developing algorithms and 
computational frameworks that support massive stores of 
declarative knowledge and accelerate knowledge activation 
calculation.  

Capacity and retrieval performance increases emerging 
from these efforts have the potential to dramatically change 
the modeling of human memory and the exploitation of 
declarative knowledge in agent-based software applications. 
The retrieval system presented in this paper, referred to as 
Accelerated Declarative Memory (ADM), empowers real-
time agents to ask general questions into massive 
declarative knowledge sources.   

ADM expands the practicality of ACT-R’s retrieval 
mechanism through the acceleration of activation 
calculation. The research effort developing ADM is 
producing a comprehensive high-performance declarative 
retrieval system, not just faster activation calculation. The 
ADM implementation is functionally equivalent to ACT-R’s 

retrieval process and offers substantial performance gains. 
The paper has the following sections: 

Retrieval in ACT-R briefly describes the retrieval process 
in the ACT-R cognitive architecture. This overview 
frames the central challenge motivating the development 
of the ADM retrieval system. 

ADM Background describes the origins and motivations of 
the ADM system. The section explains how ADM and its 
Erlang-based predecessor (soaDM) represent declarative 
knowledge in semantic networks and achieve parallel 
activation calculation through MapReduce. 

ADM Technical Details consists of a clear and detailed 
description of how ADM technically realizes parallel 
activation calculation through an optimized 
implementation of MapReduce. 

Experimental Setup describes how the performances of 
soaDM and ADM have been assessed.  

Results compares the performance of declarative retrieval in 
soaDM and ADM. 

Conclusion proposes technical and theoretical impacts of 
the ADM system and suggests future research directions. 

2. Retrieval in ACT-R 
 2.1. ACT-R Overview 

ACT-R is a cognitive architecture that can be used to 
specify and execute computational process models of human 
cognition [1]. The architecture consists of a central 
production system and several modules. The central 
production system can be thought of as the director of 
cognition. The modules support knowledge processing in 
the central production system by performing module-
specific processes and actions. Modules exist for vision, 
goal maintenance, situation representation, audition, motor 
control, and declarative memory [1]. 

ACT-R’s declarative memory is grounded in knowledge 
representations known as chunks. Chunks are composed of 
key-value pairs that encapsulate a unique piece of explicit 
factual knowledge. Upon successful retrieval, the chunk 
with the highest computed activation is placed in a retrieval 
buffer and can influence the behavior of ACT-R’s central 
production system. 

 2.2. ACT-R’s Activation-Based Retrieval Calculus 
The retrieval process in ACT-R is influenced by: (1) top-
down constraints defined in retrieval requests; and (2) 
contextual priming effects caused by chunks present in 



 

buffers capable of spreading activation. To specify a 
retrieval request in an ACT-R production, a modeler 
typically specifies the type of chunk on which to focus the 
retrieval process and may specify additional top-down 
constraints that must be met by any successfully retrieved 
chunk. During the retrieval process, all chunks of the 
specified type, or derived from the specified type through 
chunk-type inheritance, are considered initial retrieval 
candidates. Chunks meeting all top-down constraints 
defined in retrieval requests are considered final retrieval 
candidates. The activations of each chunk in the final 
candidate set are computed, and the chunk with the highest 
activation is retrieved. The equations governing the retrieval 
process in ACT-R are listed in Table 1. Chunk activation is 
primarily based on a base-level reflecting the prior 
usefulness of a chunk and spreading activation reflecting 
the degree to which other chunks in context are associated 
with a chunk.  Base-level learning influences retrieval by 
increasing the activation of recently and/or frequently 
retrieved chunks. Spreading activation influences retrieval 
by allowing contextual knowledge to prime chunks through 
shared knowledge structure and association. 

Table 1. ACT-R’s activation calculation equations. 

Name Equation 
Activation 𝐴! = 𝐵! + 𝑊!𝑆!"

!

+ 𝜀 

Base-Level Learning 
𝐵! = ln 𝑡!!!

!

!!!

 

Associative Strength 𝑆!" = 𝑆 − ln 𝑓𝑎𝑛!  
Probability of Retrieval 𝑃! =   

1

1 + 𝑒!
!!!!
!

 

Latency of Retrieval 𝑇! = 𝐹𝑒!!!  

The activation equation in Table 1 mathematically 
describes how chunks present in context buffers (indexed by 
j) produce activation values through strengths of association 
(𝑆!")  and activation weights (𝑊!)  that are combined with 
base levels to determine context-specific activations. This 
spreading activation-based retrieval process becomes a 
computational burden in real-time systems that produce 
large retrieval candidate sets1. To extend the effectiveness of 
ACT-R’s retrieval mathematics to larger declarative 
memories, the activation calculation must be accelerated. 

3. ADM Background 
The ADM retrieval system represents a technical extension 
of the RML1 retrieval system. To take advantage of the 
large-scale declarative memory system in RML1, cognitive 
modelers author and execute models in a framework 
developed using the Erlang programming language [8]. To 
broaden the usefulness of the RML1 declarative memory 

                                                
1 The number of chunks computing activation correlates directly 

to the computational stress that the retrieval produces. 

system, RML1 was functionally isolated from the broader 
Erlang execution framework; it was re-implemented as a 
net-centric software service that can be used in generic 
service oriented architectures. Again developed using 
Erlang, this Service Oriented Architecture Declarative 
Memory (soaDM) provides a declarative memory system 
that can be controlled and accessed through a published 
network interface. soaDM is now a critical component of 
the Cognitively Enhanced Complex Event Processing 
(CECEP) model specification and execution framework [8]. 

 Several current ARFL research and development efforts 
are investigating ways to accelerate core components of the 
CECEP architecture using multi-core and GPGPU 
architectures [8]. While ADM currently exploits multi-core 
computers, ultimately it will computationally realize 
activation-based knowledge retrieval using GPGPUs. 

 3.1. Declarative Knowledge in Semantic Networks 
Both soaDM and ADM represent declarative knowledge as 
a semantic network. Nodes in the semantic networks 
represent classes and instances. Edges in the networks 
represent “object properties” that capture relationships: (1) 
between classes; and (2) between classes and instances. The 
semantic network representation of declarative memory 
enables sub sections of knowledge to be traversed, rather 
than simply iterating over the entire set of knowledge. 

 
Fig. 1. Comparison of ACT-R chunk representation and soaDM/ADM 

semantic network representations. 

Fig. 1 illustrates the mapping between frame-based 
chunks in ACT-R and semantic networks in soaDM and 
ADM. Chunks are realized as nodes, and key/value pairs are 
realized as directed edges. Nodes internally represent lists of 
“data properties” that capture relationships between the 
node and instances of data types (integer, float, etc.). Each 
node maintains a fan, which is a numerical representation of 
knowledge complexity. In semantic networks, a node’s fan 
is the number of nodes with edges that have this node as the 
head (the number of edges referring to this node). In Fig. 1, 
value1 has a fan of 2 while value3 has a fan of 1. 

 One of the critical differences between the chunk and 
semantic network representation is that values used by 
chunks are expanded into full nodes. They have the same 
status in the network as the chunk nodes because they are 
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literally other chunk nodes. This has powerful implications 
when attempting to access the network based on a value in a 
retrieval request. 

 3.2. Retrieval from Semantic Networks 
A retrieval process yielding identical results as ACT-R can 
be realized in semantic networks using: (1) activation 
sources; (2) node property filters. Activation sources 
specify: (1) retrieval requirements; (2) context primes. 

Retrieval requirements are specified as tuples capturing: 
(1) a relation; (2) a node that is in the range of the relation. 
Node property filters are specified as tuples capturing: (1) a 
relation; (2) either a node that is in the range of the relation 
when it defines an object property or an instance of the 
relation’s data type when it defines a data property. 
Together, retrieval requirements and node property filters 
are equivalent to ACT-R top-down constraints. 

Context priming sources are specified as tuples capturing: 
(1) a relation; (2) a node in the range of the relation; (3) a 
number corresponding to the total activation that that can 
“spread” from a context source; and (4) a number 
corresponding to the structural complexity of a source 
context. During retrieval: (1) activation is spread from 
activation sources; (2) node property filters are applied to 
nodes receiving activation; (3) nodes that received 
activation and survive property filters compute their 
activation; and (4) the node with the highest activation is 
determined. The retrieval process ultimately returns the set 
of relations (including the domain and range nodes) 
originating at the winning node. 

Activation calculation in the soaDM mimics the ACT-R’s 
calculation by “spreading” an activation of 0 to nodes when 
a source of activation is a retrieval requirement and 
calculated associative values when a source is a context 
priming source [2]. ADM’s retrieval requirement 
enforcement and context priming source activation 
contributions are functionally equivalent and facilitated 
through multiple data structures described in Section 4. Fig. 
2 shows a part of a semantic network capturing propositions 
about people and locations.  

 
Fig. 2. Semantic network representing propositions {p1, p2, p3} that a 

hippie that has_location relations to church park and bank. 

Assuming equivalent chunk knowledge is available in 
ACT-R, Table 2 shows ACT-R retrieval requests and 
soaDM/ADM retrieval requirements and node property 
filters that are functionally equivalent. The first ACT-R 
retrieval request requires that any retrieved chunk be of type 
proposition. The first soaDM/ADM retrieval requirement 
spreads activation to all nodes related to proposition through 
the type relation. Identical activation calculation across all 
proposition chunks/nodes occurs in both retrieval systems. 

Table 2. Retrieval comparison excluding context priming. 
ACT-R retrieval Retrieval 

requirements 
Node property 

filters 
+retrieval> 
  isa  proposition 

type 
  proposition 

 

+retrieval> 
  isa  proposition 
  has_person  hippie 

type 
  proposition 

has_person 
  hippie 

+retrieval> 
  isa  proposition 
  has_person  hippie 

has_person 
  hippie 

type 
  proposition 

The second and third retrieval requests impose an 
additional restriction on the retrieval process; retrieved 
chunks must also possess a key/value pair “has_person 
hippie” (ACT-R) or candidate proposition nodes must be 
related to the hippie node via a has_person relation 
(soaDM/ADM). Note that swapping retrieval requirements 
and node filters in the third comparison spreads activation  
from the hippie node and then requires that any candidate 
nodes be of type proposition. This swap illustrates that: (1) 
retrieval in soaDM/ADM is not dependent on a type or 
“ISA” property; and (2) that different activation sources can 
be used to effect the same retrieval. This latter point is 
important because spreading activation from a low-fan node 
such as hippie can dramatically alter the complexity of 
retrieval. If the fan of proposition is 1 million, then 
activation is spread to potentially 1 million candidate nodes 
when proposition is used as a retrieval requirement 
activation source. Alternatively, if the fan of hippie is 25, 
only 25 candidate nodes are considered to receive spreading 
activation.  

In soaDM, the modeler explicitly requests this swap 
between retrieval requirements and node property filters. In 
ADM, the optimal swap is found by querying the network 
for the node with the lowest fan. ADM then applies the 
other retrieval requirements as node property filters 
surrounding the node with the lowest fan. Section 4.2 
describes the differences, advantages, and justifications of 
this process. 

Table 3 shows how context priming sources are used in 
soaDM/ADM to reproduce context-based spreading 
activation. Assuming the chunk fireman is available in one 
of ACT-R’s activation source buffers, the retrieval 
processes in both systems will yield identical results. 
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Table 3. Retrieval comparison including context priming. 

ACT-R 
retrieval 

Retrieval 
requirements 

Context 
priming 
sources 

W N 

+retrieval> 
  isa   
    proposition 

type 
 proposition 

has_person 
 fireman 

1 3 

The semantic network representation allows for more 
optimized searching and traversal if activation calculation is 
effectively managed across candidate nodes.  The critical 
challenge of achieving high-performance with the semantic 
network approach to retrieval is realizing activation 
calculation across all candidate nodes as quickly as possible. 
Both soaDM and ADM use the MapReduce computing 
model to maximize the concurrency of candidate node 
activation calculation. The soaDM declarative system 
utilizes lightweight threads and Erlang’s message passing to 
coordinate the execution of the retrieval process using 
MapReduce [2]. The ADM declarative system uses hash 
tables to coordinate and execute an equivalent computing 
model. 

 3.3. Spreading Activation Using MapReduce 
MapReduce can be described as simplified processing on 
multiple threads [9]. In Flynn’s taxonomy of computer 
architectures, MapReduce is classified as Single Program 
Multiple Data (SPMD). In SPMD architectures, multiple 
independent processors execute the same program on 
different data. The MapReduce programming model 
consists of: (1) independent data elements; (2) a 
computational process that can be applied to each 
independent data element; (3) processes called “mappers” 
that apply the computational process to data elements; and 
(4) processes called “reducers” that integrate computational 
results reported by “mappers” into a final computational 
result. 

The soaDM and ADM retrieval systems map the 
following facets of spreading activation calculation to the 
MapReduce programming model. Both retrieval systems 
define the aspects of the MapReduce processing pipeline 
shown in Fig. 3 in the following manner. 
 

 
Fig. 3. The MapReduce processing pipeline that transforms data elements 

into a final result. 

Independent Data Elements: processed data consists of 
semantic network nodes representing: (1) ACT-R 
retrieval parameters; (2) base level histories; (3) edge 
collections capturing object properties; and (4) node 
attributes capturing data properties. 

Computational Process: chunk/node activation calculation 
functionally replicating ACT-R’s recency/frequency 
retrieval calculus.  Calculation depends on: (1) base 
levels; (2) ACT-R declarative module control 
parameters; (3) top-down constraints defined in 
retrieval requests; and (4) contextual priming effects. 

Mappers: processes that apply activation calculation 
process over sub-sets of semantic network nodes being 
processed. Mappers apply activation calculation process 
to subsets of semantic network nodes corresponding to 
retrieval candidates and relay activation results back to 
the main retrieval process through reducers. 

Reducers: processes that integrate computational results 
from mappers into a final result. In soaDM and ADM, a 
“top-level” retrieval computation receives activation 
results from the mappers and returns the semantic 
network node with the greatest activation. This node is 
the base of the knowledge retrieved from memory. 

Both the soaDM and ADM declarative memories consider 
retrieval candidate sets to be a data set that can be processed 
while exploiting SPMD parallelism. The use of the SPMD 
paradigm to achieve concurrent spreading activation 
calculation distinguishes the discussed work from related 
work using database technologies [3]-[6]. Both the soaDM 
and ADM solutions divide the candidate node set into 
“work units” which are processed through concurrent 
mappers. Both solutions also “reduce” node/activation 
computational results in the same general manner. 

4. ADM Technical Details 
The Accelerated Declarative Memory (ADM) system is 
based on a MapReduce programming model implemented in 
optimized C++. This section of the paper describes how 
semantic networks are implemented using hash tables and 
how parallel spreading activation and base level calculations 
are realized in C++ threads using MapReduce. 

 4.1. Restructuring DM using Hash Tables 
ADM utilizes sets of hash tables with references to enable 
rapid access into any portion of the semantic network. Hash 
tables were chosen due to their constant lookup time, 
making network access during retrieval direct and 
independent of network size. ADM avoids the overhead of 
iteration or message passing present in the CMU’s ACT-R 
distribution and soaDM, respectively. The desired portion of 
the network can be directly accessed in a maximum of two 
hashing functions.  

There are two critical hash tables that facilitate network 
access. The first hash table consists of a Name to Node 
(NTN) map, which maps node names to a reference with 
their memory location. The NTN is used to verify the need 
to add or merge an incoming piece of knowledge and to 
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spread activation from context priming sources. Adding or 
merging a node is defined by ACT-R [1], and Section 4.3.1 
describes the NTN’s role during spreading activation. 

The second hash table maps relations to a hash table of 
nodes with the relation pointing to them. This hash table is a 
Master Relation List (MRL). The MRL encompasses every 
relation present in the semantic network. The value stored in 
each MRL entry is another hash table, namely a Relation 
List (RL). Fig. 4 shows the structure of the MRL and 
corresponding RLs, as well as how they access the semantic 
network.  

 
Fig. 4. MRL and RL semantic network access. 

Each RL contains the nodes that have nodes referring to 
them (the head of the edge) through the particular relation. It 
is critical that the RL be filled with nodes that have the 
relation referring to them, rather than with nodes referring 
away from themselves (the tail of the edge) through the 
relation. The MRL and corresponding RLs facilitate 
accessing all nodes that contain a relation to a particular 
node. This represents one of ADM’s main performance 
advantages; ADM can go from a retrieval requirement 
directly to the relevant portion of the semantic network in 
constant time. 

 4.2. Optimizing Candidate Set Determination 
Determining the nodes that fulfill all top-down constraints is 
one of two critical retrieval steps. Candidate set 
determination showcases one of ADM’s primary advantages 
over ACT-R and soaDM. Note that every node in the 
candidate set must fulfill every retrieval requirement. The 
candidate set is always the intersection between each set of 
nodes fulfilling a single retrieval requirement. 

Consider the example described Table 2 with “type 
proposition” and “has_person hippie” as retrieval 
requirements. The proposition node has a fan of 1 million 
nodes, and the hippie node has a fan of 25 nodes. Note that a 
node’s fan is the number of nodes with edges that point to 
this node (refer to Section 3.1 for details on fan). The 
algorithm described below is executed sequentially. 

In Table 2’s example, the candidate set is the set of nodes 
that are connected to proposition through a type edge and 
are also connected to hippie through a has_person edge. Let 
P1 = { x is connected to “proposition” | x is connected 
through “type” }, H1 = { x is connected to “hippie” | x is 
connected through “has_person” }. Therefore, P1∩H1 
represents the nodes fulfilling both requirements and is the 
candidate set. Suppose |P1| is 200 nodes, |H1| is 10 nodes, 
and |P1∩H1| is 3 nodes. Fig. 5 depicts these sets. 

 
Fig. 5. Intersection of retrieval requirements. 

Huge performance advantages could be gained by finding 
the smallest set of nodes fulfilling a single retrieval 
requirement (e.g., H1). Such a solution requires examining 
node edges and introduces a heavy computational burden to 
verify the smallest set has actually been found. However, a 
good approximation can be rapidly verified by finding the 
node specified in the retrieval requirements with the lowest 
fan; fan represents the maximum number of nodes a 
particular node could add to the candidate set.  

Reexamining Table 2’s example, let P2 = { x | x is 
connected to “proposition” }, H2 = { x | x is connected to 
“hippie” }. P2 and H2 encompass the total number of nodes 
connected to proposition and hippie, respectively. P2∩H2 is 
the intersection between nodes connected proposition and 
hippie through any relation, including type and has_person. 
By definition, P1⊆P2, H1⊆H2, and (P1∩H1)⊆(P2∩H2).  |P2| 
= 1 million nodes (the fan of proposition), and |H2| = 25 
nodes (the fan of hippie). The exact value of |P2∩H2| is not 
important for this example, however |P2∩H2| must be ≥ 3 
(as |P1∩H1| = 3). 

Fig. 6 depicts the approximation. Selecting the node with 
the lowest fan (e.g., hippie) reduces the number of nodes 
that are checked for candidacy. In the example, it is the 
difference between checking the candidacy of 25 nodes 
versus 1 million nodes. Regardless of how many nodes are 
checked for candidacy, only the 3 nodes fulfilling both 
retrieval requirements (P1∩H1) will be added to the 
candidate set. 

 
Fig. 6. Intersection of retrieval requirements showing entire fan. 
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ADM realizes this approximation by iterating over each 
retrieval requirement, finding the corresponding node 
through the MRL, and updating a reference to the node with 
the lowest fan as needed. From the node with the lowest fan 
(e.g., hippie), ADM applies each retrieval requirement as a 
node filter. All nodes that survive filtering are added to the 
candidate set. This effectively automates the swap of 
retrieval requirements and node property filters utilized by 
modelers using soaDM. 

 4.3. Retrieval Execution in ADM 
To minimize retrieval latencies, ADM supports two retrieval 
execution modes: serial and parallel. Serial execution is best 
suited for extremely small declarative memories where the 
overhead of launching and synchronizing threads outweighs 
the latency of retrieval. Parallel execution utilizes 
MapReduce to divide portions of computation across 
available resources. Parallel execution follows the same 
algorithm as serial execution but across multiple threads. 

4.3.1. Serial Retrieval Execution 
ADM’s serial operation executes in the following order: (1) 
nodes are added to the candidate set; (2) activation is 
spread; (3) activation is computed; and (4) the node with the 
highest activation is returned to working memory. 

1. ADM’s serial operation begins by determining the 
candidate set, as described in Section 4.2.  

2. After determining the candidate set, activation is spread 
from context priming sources. The NTN map facilities 
finding the nodes in each context priming source, simply 
by looking them up by name. In Table 3’s example, 
fireman is found through the NTN, and nodes connected 
to fireman through has_person receive appropriately 
weighted activation, governed by the equations in Table 
1. ACT-R is insensitive to the key in key/value 
(relation/node) pairs describing context priming sources. 
ACT-R behavior can be replicated in soaDM and ADM 
by passing “‘*’” as the key [2]. Using ACT-R behavior, 
every node connected to fireman receives appropriately 
weighted activation. 

3. Activation is computed for each node in the candidate 
set, following the equations in Table 1. The node with 
the highest activation is returned to working memory. 

ADM’s serial execution describes how semantic 
networks can realize ACT-R’s retrieval process utilizing 
hash tables for network access. The serial execution 
algorithm is utilized during parallel execution, but with the 
MapReduce computing model to divide computation. 

4.3.2. Parallel Retrieval Execution 
Candidate set determination and activation computation can 
greatly benefit from MapReduce. Each node in the network 
operates as an independent data element. The ADM main 
thread launches two threads to begin the concurrent retrieval 
process: (1) a candidate set manager fill the candidate set 
based on retrieval requirements and (2) a spreading 
activation manager to spread activation from context 

priming sources. In ADM’s MapReduce model, manager 
threads act as reducers, and worker threads act as mappers. 
Fig. 7 shows ADM’s parallel retrieval execution. Each 
“Sync” line in Fig. 7 represents thread synchronization due 
to data dependence before advancing execution. The 
algorithm for ADM’s parallel execution is below in Fig. 7. 

 
Fig. 7. ADM parallel retrieval execution. 

1. The candidate set manager processes retrieval 
requirements to fill the candidate set and acts as the 
reducer for the candidate set determination. The node 
with the lowest fan is found by iterating over the 
retrieval request as described in Section 4.2. The 
candidate set manager launches worker threads based on 
the structure of the network surrounding the node with 
the lowest fan. The number of workers launched is the 
number of processor cores available in the system. Each 
worker is assigned a portion of the relations coming into 
the node with the lowest fan. Upon completion of each 
worker, the candidate set manager collects the 
candidates reported by each thread into the final 
candidate set. 

2. The spreading activation manager runs concurrently with 
the candidate set manager and distributes activation from 
context priming sources. The execution of spreading 
activation follows the description in Section 4.3.1. Only 
one thread is reserved to spread activation due its simple 
computation. 

3. Once the candidate set and spreading activation 
managers finish, execution returns to the main ADM 
thread. Every node in the candidate set must re-compute 
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its activation. Activation calculation is split among 
worker threads to saturate all available processor cores. 
Each worker launched is responsible for computing a 
section of the candidate set. Each thread reports their 
winning node, and the ADM main thread returns the 
node with the highest activation to working memory. 

During candidate set determination and spreading 
activation, more threads than available processor cores are 
in execution. The execution of candidate determination and 
spreading activation is highly variable based on the structure 
of the network and the specific retrieval request. However, 
determining candidates is a substantially heavier 
computational burden than spreading activation. To 
maximize CPU saturation during the entire retrieval process, 
the number of threads launched overshoots the number of 
processor cores available by 1. The additional thread is 
reserved for spreading activation. ADM relies on the 
operating system scheduler to appropriately allocate 
resources. 

5. Experimental Setup 
In order to meaningfully compare soaDM and ADM, the 
analysis described by [2] was replicated. The testing 
computer had an Intel Xeon W5590 with 48GB (12x4GB) 
of 1333MHz RAM running Ubuntu 14.04 LTS. The 
declarative memory parameters and retrieval requests were 
identical in all tests. The ontology sources, number of nodes 
computing activation, and retrieval requests are shown in 
Table A1. Because each retrieval request contained only one 
retrieval requirement, the speedup ADM produced is due to 
ADM’s optimized MapReduce model, not from the 
algorithm to select the optimal starting node outlined in 
Section 4.2. 

6. Results 
Fig. 8 concisely shows that ADM achieved a roughly 20 
times performance increase over soaDM.  

 
Fig. 8. Performance comparison of soaDM and ADM. 

ADM was able to coordinate the full ACT-R activation 
calculation across 1.3 million nodes in less than 200ms. 
Parallel ADM performed approximately 6 times faster than 
serial ADM over 1.3 million nodes computing activation. 
ADM’s serial execution was optimal when 15 nodes 
computed activation.  

Each retrieval was executed 60 times, and Fig. 8 shows 
the average over the 60 retrievals. It is worth noting that 
soaDM is inherently parallel; Erlang automatically 
distributes activation calculation among available resources. 
The evaluation between soaDM and parallel ADM is the 
appropriate performance comparison.  

 6.1. ADM Comparison to other DM Systems 
ADM utilizes a highly optimized MapReduce programming 
model. The data structures, parallel processing, and 
execution were specifically designed to support the ACT-R 
retrieval calculus. ADM performs the full ACT-R retrieval 
process. SemMemDB from [6] illustrates an interesting 
method to compute spreading activation in database 
systems. However, SemMemDB offers no apparent method 
of enforcing top-down constraints. soaDM enforces top-
down constraints by spreading an activation of 0 only to 
nodes connected along the relation specified in the top-
down constraint, as described in [2]. SemMemDB appears 
to only be capable of spreading activation, including 0, to 
every node connected to the context-priming source node, 
rather than only the nodes connected through the specified 
relation. ADM realizes the same top-down constraint 
enforcement through the MRL. 

To understand the performance advantages ADM presents 
over soaDM, the Erlang-based soaDM needs to be revisited. 
soaDM facilitates network access and activity through 
supervisor threads [2]. These supervisor threads utilize 
Erlang’s built-in message passing to wake the desired 
portion of the semantic network. However, Erlang’s 
message passing requires each message being copied from 
sender to receiver. Locks, mutexes, and shared memory are 
not required in this model at the expense of copying data 
with every message passed. The exact messages sent during 
soaDM’s retrieval are described in [2]. 

The MRL and NTN enable direct access to subsections of 
the network at a time, similar to soaDM waking subsections 
of the network. However, ADM avoids the overhead of 
message passing; each incoming retrieval request is treated 
as static, read-only data. ADM also benefits from the speed 
C++ provides through direct memory references. The MRL 
and NTN traverse the network using references; accessing 
network routes is incredibly inexpensive. Shared, read-only 
data is routed throughout ADM’s execution using 
references. Each directed edge in the network is achieved 
through a reference to the head node and tail node. These 
design decisions enable ADM’s rapid network traversal. 

The algorithm in Section 4.2 shows ADM will 
automatically find the optimal starting node (the node with 
the lowest fan) for determining the candidate set. From this 
perspective, the distinction between retrieval requirements 
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and node property filters is diminished in ADM. The 
modeler no longer needs to be concerned with the structure 
of the knowledge to minimize retrieval latency. It is critical 
to note that ADM finding the optimal starting node only 
presents an advantage over soaDM when: (1) there is more 
than one retrieval requirement and (2) the modeler does not 
utilize or does not optimally swap retrieval requirements 
and node property filters. 

7. Conclusion 
ADM constitutes another step towards creating a declarative 
memory that can store and retrieve knowledge on massive 
scales while maintaining real-time performance. The use of 
a semantic network and MapReduce offers substantial 
performance gains over traditional ACT-R. ADM optimizes 
the retrieval process in multiple ways: (1) enabling constant 
time lookup of any section of the network; (2) traversing 
knowledge through references rather than iteration or 
message passing; and (3) guaranteeing the optimal starting 
node for candidate set determination.  

ADM constitutes a complete reconsideration of how to 
store and access declarative knowledge to lower retrieval 
latencies. Access to larger declarative memories gives 
agents the ability to react appropriately in real-time to a 
wider variety of situations. Cognitive modelers will be able 
to build applied models and agents that employ declarative 
knowledge bases composed from sources such as OpenCyc, 
WordNet, domain ontologies such as the Suggested Upper 
Merged Ontology (SUMO), and the semantic web.  

Future work will focus on parallelizing candidate set 
determination and activation calculation in specialized 
hardware. ADM is currently being implemented to harness a 
GPGPU through CUDA. Leveraging the parallelization 
present in GPGPUs will further increase the scale of 
knowledge that ADM can support. ADM’s serial, parallel, 
and CUDA implementations will be combined to minimize 
the retrieval time. Future work should also include a 
comparison of the optimized starting node for candidate set 
determination described in Section 4.2. The 

implementations presented in [2]-[6] should be carefully 
evaluated and compared against ADM’s retrieval 
optimizations. 
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Appendix 
Table A1. Retrievals executed during soaDM and ADM comparison. Each retrieval was executed 60 times. The Fan Effect ontology is 
provided by the CMU ACT-R distribution. MobyII Thesaurus sources were segmented as described in [2]. 

Ontology source Nodes computing activation Retrieval requirements Context priming sources W N 
Fan Effect 15 type event has_person    hippie 

has_location  park 
1 3 

Moby II (1 in 3) 145,073 
 

type synonym_relation ‘*’           taxing 
‘*’           demanding 
‘*’           straining 

1 4 

Moby II (1 in 2) 318,435 
 

type synonym_relation ‘*’           mazy 
‘*’           whimsical 
‘*’           flighty 

1 4 

Moby II (1 in 1) 1,281,763 
 

type synonym_relation ‘*’           mazy 
‘*’           whimsical 
‘*’           flighty 

1 4 

 


