
High Performance Declarative Memory Systems through MapReduce

Mark Edmonds, Tanvir Atahary, Tarek Taha
Department of Electrical and Computer Engineering

University of Dayton
Dayton, USA

{edmondsm1, ataharyt1, ttaha1}@udayton.edu

Scott A. Douglass
Air Force Research Laboratory

United States Air Force
Wright-Patterson AFB, USA
scott.douglass.1@us.af.mil

Abstract—This paper describes the acceleration of the

declarative knowledge retrieval system of a cognitive architecture,
namely ACT-R. The core of ACT-R’s retrieval mechanism,
activation calculation, is accelerated through leveraging the speed
of C++ and the MapReduce program model. Work described in
this paper represents an extension of previous Erlang-based
concurrent activation. ACT-R’s retrieval process is re-examined
and optimized in this solution. Concurrency available in the
execution platform is exploited to maximize the acceleration of
declarative retrieval. The resulting implementation, referred to as
Accelerated Declarative Memory (ADM), presents a high-
performance activation calculation that enables practical use of
more massive declarative memories. ADM presents new
mechanisms to access and traverse declarative memory to reduce
the overhead of executing retrievals. This solution offers retrieval
latencies 20 times faster than the previous Erlang solution.

Keywords—ACT-R; declarative memory; semantic networks;
MapReduce; parallel activation calculation.

1. Introduction
Cognitive architectures attempt to computationally

describe the functional structure of the human mind. They
link the structure of the brain to the function of the mind [1].
The declarative memory module of the ACT-R cognitive
architecture gives agents the ability to recall factual
information from their past [1]. A growing number of
researchers in the cognitive architectures community are
investigating ways to increase the capacity and performance
of declarative retrieval systems [2]-[6]. Seeking to extend
the practicality of existing associative retrieval mechanisms,
these researchers are developing algorithms and
computational frameworks that support massive stores of
declarative knowledge and accelerate knowledge activation
calculation.

Capacity and retrieval performance increases emerging
from these efforts have the potential to dramatically change
the modeling of human memory and the exploitation of
declarative knowledge in agent-based software applications.
The retrieval system presented in this paper, referred to as
Accelerated Declarative Memory (ADM), empowers real-
time agents to ask general questions into massive
declarative knowledge sources.

ADM expands the practicality of ACT-R’s retrieval
mechanism through the acceleration of activation
calculation. The research effort developing ADM is
producing a comprehensive high-performance declarative
retrieval system, not just faster activation calculation. The
ADM implementation is functionally equivalent to ACT-R’s

retrieval process and offers substantial performance gains.
The paper has the following sections:

Retrieval in ACT-R briefly describes the retrieval process
in the ACT-R cognitive architecture. This overview
frames the central challenge motivating the development
of the ADM retrieval system.

ADM Background describes the origins and motivations of
the ADM system. The section explains how ADM and its
Erlang-based predecessor (soaDM) represent declarative
knowledge in semantic networks and achieve parallel
activation calculation through MapReduce.

ADM Technical Details consists of a clear and detailed
description of how ADM technically realizes parallel
activation calculation through an optimized
implementation of MapReduce.

Experimental Setup describes how the performances of
soaDM and ADM have been assessed.

Results compares the performance of declarative retrieval in
soaDM and ADM.

Conclusion proposes technical and theoretical impacts of
the ADM system and suggests future research directions.

2. Retrieval in ACT-R
 2.1. ACT-R Overview

ACT-R is a cognitive architecture that can be used to
specify and execute computational process models of human
cognition [1]. The architecture consists of a central
production system and several modules. The central
production system can be thought of as the director of
cognition. The modules support knowledge processing in
the central production system by performing module-
specific processes and actions. Modules exist for vision,
goal maintenance, situation representation, audition, motor
control, and declarative memory [1].

ACT-R’s declarative memory is grounded in knowledge
representations known as chunks. Chunks are composed of
key-value pairs that encapsulate a unique piece of explicit
factual knowledge. Upon successful retrieval, the chunk
with the highest computed activation is placed in a retrieval
buffer and can influence the behavior of ACT-R’s central
production system.

 2.2. ACT-R’s Activation-Based Retrieval Calculus
The retrieval process in ACT-R is influenced by: (1) top-
down constraints defined in retrieval requests; and (2)
contextual priming effects caused by chunks present in

buffers capable of spreading activation. To specify a
retrieval request in an ACT-R production, a modeler
typically specifies the type of chunk on which to focus the
retrieval process and may specify additional top-down
constraints that must be met by any successfully retrieved
chunk. During the retrieval process, all chunks of the
specified type, or derived from the specified type through
chunk-type inheritance, are considered initial retrieval
candidates. Chunks meeting all top-down constraints
defined in retrieval requests are considered final retrieval
candidates. The activations of each chunk in the final
candidate set are computed, and the chunk with the highest
activation is retrieved. The equations governing the retrieval
process in ACT-R are listed in Table 1. Chunk activation is
primarily based on a base-level reflecting the prior
usefulness of a chunk and spreading activation reflecting
the degree to which other chunks in context are associated
with a chunk. Base-level learning influences retrieval by
increasing the activation of recently and/or frequently
retrieved chunks. Spreading activation influences retrieval
by allowing contextual knowledge to prime chunks through
shared knowledge structure and association.

Table 1. ACT-R’s activation calculation equations.

Name Equation
Activation 𝐴! = 𝐵! + 𝑊!𝑆!"

!

+ 𝜀

Base-Level Learning
𝐵! = ln 𝑡!!!

!

!!!

Associative Strength 𝑆!" = 𝑆 − ln 𝑓𝑎𝑛!
Probability of Retrieval 𝑃! =

1

1 + 𝑒!
!!!!
!

Latency of Retrieval 𝑇! = 𝐹𝑒!!!

The activation equation in Table 1 mathematically
describes how chunks present in context buffers (indexed by
j) produce activation values through strengths of association
(𝑆!") and activation weights (𝑊!) that are combined with
base levels to determine context-specific activations. This
spreading activation-based retrieval process becomes a
computational burden in real-time systems that produce
large retrieval candidate sets1. To extend the effectiveness of
ACT-R’s retrieval mathematics to larger declarative
memories, the activation calculation must be accelerated.

3. ADM Background
The ADM retrieval system represents a technical extension
of the RML1 retrieval system. To take advantage of the
large-scale declarative memory system in RML1, cognitive
modelers author and execute models in a framework
developed using the Erlang programming language [8]. To
broaden the usefulness of the RML1 declarative memory

1 The number of chunks computing activation correlates directly

to the computational stress that the retrieval produces.

system, RML1 was functionally isolated from the broader
Erlang execution framework; it was re-implemented as a
net-centric software service that can be used in generic
service oriented architectures. Again developed using
Erlang, this Service Oriented Architecture Declarative
Memory (soaDM) provides a declarative memory system
that can be controlled and accessed through a published
network interface. soaDM is now a critical component of
the Cognitively Enhanced Complex Event Processing
(CECEP) model specification and execution framework [8].

 Several current ARFL research and development efforts
are investigating ways to accelerate core components of the
CECEP architecture using multi-core and GPGPU
architectures [8]. While ADM currently exploits multi-core
computers, ultimately it will computationally realize
activation-based knowledge retrieval using GPGPUs.

 3.1. Declarative Knowledge in Semantic Networks
Both soaDM and ADM represent declarative knowledge as
a semantic network. Nodes in the semantic networks
represent classes and instances. Edges in the networks
represent “object properties” that capture relationships: (1)
between classes; and (2) between classes and instances. The
semantic network representation of declarative memory
enables sub sections of knowledge to be traversed, rather
than simply iterating over the entire set of knowledge.

Fig. 1. Comparison of ACT-R chunk representation and soaDM/ADM

semantic network representations.

Fig. 1 illustrates the mapping between frame-based
chunks in ACT-R and semantic networks in soaDM and
ADM. Chunks are realized as nodes, and key/value pairs are
realized as directed edges. Nodes internally represent lists of
“data properties” that capture relationships between the
node and instances of data types (integer, float, etc.). Each
node maintains a fan, which is a numerical representation of
knowledge complexity. In semantic networks, a node’s fan
is the number of nodes with edges that have this node as the
head (the number of edges referring to this node). In Fig. 1,
value1 has a fan of 2 while value3 has a fan of 1.

 One of the critical differences between the chunk and
semantic network representation is that values used by
chunks are expanded into full nodes. They have the same
status in the network as the chunk nodes because they are

chunk1

key1

key2

key3

value1

value2

value3

chunk2

key4

key5

value1

value2

chunk1

chunk2value1

value2value3

key1

key3

ACT-R chunks Semantic network nodes

key5

key4

key2

literally other chunk nodes. This has powerful implications
when attempting to access the network based on a value in a
retrieval request.

 3.2. Retrieval from Semantic Networks
A retrieval process yielding identical results as ACT-R can
be realized in semantic networks using: (1) activation
sources; (2) node property filters. Activation sources
specify: (1) retrieval requirements; (2) context primes.

Retrieval requirements are specified as tuples capturing:
(1) a relation; (2) a node that is in the range of the relation.
Node property filters are specified as tuples capturing: (1) a
relation; (2) either a node that is in the range of the relation
when it defines an object property or an instance of the
relation’s data type when it defines a data property.
Together, retrieval requirements and node property filters
are equivalent to ACT-R top-down constraints.

Context priming sources are specified as tuples capturing:
(1) a relation; (2) a node in the range of the relation; (3) a
number corresponding to the total activation that that can
“spread” from a context source; and (4) a number
corresponding to the structural complexity of a source
context. During retrieval: (1) activation is spread from
activation sources; (2) node property filters are applied to
nodes receiving activation; (3) nodes that received
activation and survive property filters compute their
activation; and (4) the node with the highest activation is
determined. The retrieval process ultimately returns the set
of relations (including the domain and range nodes)
originating at the winning node.

Activation calculation in the soaDM mimics the ACT-R’s
calculation by “spreading” an activation of 0 to nodes when
a source of activation is a retrieval requirement and
calculated associative values when a source is a context
priming source [2]. ADM’s retrieval requirement
enforcement and context priming source activation
contributions are functionally equivalent and facilitated
through multiple data structures described in Section 4. Fig.
2 shows a part of a semantic network capturing propositions
about people and locations.

Fig. 2. Semantic network representing propositions {p1, p2, p3} that a

hippie that has_location relations to church park and bank.

Assuming equivalent chunk knowledge is available in
ACT-R, Table 2 shows ACT-R retrieval requests and
soaDM/ADM retrieval requirements and node property
filters that are functionally equivalent. The first ACT-R
retrieval request requires that any retrieved chunk be of type
proposition. The first soaDM/ADM retrieval requirement
spreads activation to all nodes related to proposition through
the type relation. Identical activation calculation across all
proposition chunks/nodes occurs in both retrieval systems.

Table 2. Retrieval comparison excluding context priming.
ACT-R retrieval Retrieval

requirements
Node property

filters
+retrieval>
 isa proposition

type
 proposition

+retrieval>
 isa proposition
 has_person hippie

type
 proposition

has_person
 hippie

+retrieval>
 isa proposition
 has_person hippie

has_person
 hippie

type
 proposition

The second and third retrieval requests impose an
additional restriction on the retrieval process; retrieved
chunks must also possess a key/value pair “has_person
hippie” (ACT-R) or candidate proposition nodes must be
related to the hippie node via a has_person relation
(soaDM/ADM). Note that swapping retrieval requirements
and node filters in the third comparison spreads activation
from the hippie node and then requires that any candidate
nodes be of type proposition. This swap illustrates that: (1)
retrieval in soaDM/ADM is not dependent on a type or
“ISA” property; and (2) that different activation sources can
be used to effect the same retrieval. This latter point is
important because spreading activation from a low-fan node
such as hippie can dramatically alter the complexity of
retrieval. If the fan of proposition is 1 million, then
activation is spread to potentially 1 million candidate nodes
when proposition is used as a retrieval requirement
activation source. Alternatively, if the fan of hippie is 25,
only 25 candidate nodes are considered to receive spreading
activation.

In soaDM, the modeler explicitly requests this swap
between retrieval requirements and node property filters. In
ADM, the optimal swap is found by querying the network
for the node with the lowest fan. ADM then applies the
other retrieval requirements as node property filters
surrounding the node with the lowest fan. Section 4.2
describes the differences, advantages, and justifications of
this process.

Table 3 shows how context priming sources are used in
soaDM/ADM to reproduce context-based spreading
activation. Assuming the chunk fireman is available in one
of ACT-R’s activation source buffers, the retrieval
processes in both systems will yield identical results.

p1

p2

hippie

park

captain

fireman
church

bank

p3

p7

p4

has_location

has_location

has_location

has_location

has_location

has_person has_person

has_person

has_person

has_person

Table 3. Retrieval comparison including context priming.

ACT-R
retrieval

Retrieval
requirements

Context
priming
sources

W N

+retrieval>
 isa
 proposition

type
 proposition

has_person
 fireman

1 3

The semantic network representation allows for more
optimized searching and traversal if activation calculation is
effectively managed across candidate nodes. The critical
challenge of achieving high-performance with the semantic
network approach to retrieval is realizing activation
calculation across all candidate nodes as quickly as possible.
Both soaDM and ADM use the MapReduce computing
model to maximize the concurrency of candidate node
activation calculation. The soaDM declarative system
utilizes lightweight threads and Erlang’s message passing to
coordinate the execution of the retrieval process using
MapReduce [2]. The ADM declarative system uses hash
tables to coordinate and execute an equivalent computing
model.

 3.3. Spreading Activation Using MapReduce
MapReduce can be described as simplified processing on
multiple threads [9]. In Flynn’s taxonomy of computer
architectures, MapReduce is classified as Single Program
Multiple Data (SPMD). In SPMD architectures, multiple
independent processors execute the same program on
different data. The MapReduce programming model
consists of: (1) independent data elements; (2) a
computational process that can be applied to each
independent data element; (3) processes called “mappers”
that apply the computational process to data elements; and
(4) processes called “reducers” that integrate computational
results reported by “mappers” into a final computational
result.

The soaDM and ADM retrieval systems map the
following facets of spreading activation calculation to the
MapReduce programming model. Both retrieval systems
define the aspects of the MapReduce processing pipeline
shown in Fig. 3 in the following manner.

Fig. 3. The MapReduce processing pipeline that transforms data elements

into a final result.

Independent Data Elements: processed data consists of
semantic network nodes representing: (1) ACT-R
retrieval parameters; (2) base level histories; (3) edge
collections capturing object properties; and (4) node
attributes capturing data properties.

Computational Process: chunk/node activation calculation
functionally replicating ACT-R’s recency/frequency
retrieval calculus. Calculation depends on: (1) base
levels; (2) ACT-R declarative module control
parameters; (3) top-down constraints defined in
retrieval requests; and (4) contextual priming effects.

Mappers: processes that apply activation calculation
process over sub-sets of semantic network nodes being
processed. Mappers apply activation calculation process
to subsets of semantic network nodes corresponding to
retrieval candidates and relay activation results back to
the main retrieval process through reducers.

Reducers: processes that integrate computational results
from mappers into a final result. In soaDM and ADM, a
“top-level” retrieval computation receives activation
results from the mappers and returns the semantic
network node with the greatest activation. This node is
the base of the knowledge retrieved from memory.

Both the soaDM and ADM declarative memories consider
retrieval candidate sets to be a data set that can be processed
while exploiting SPMD parallelism. The use of the SPMD
paradigm to achieve concurrent spreading activation
calculation distinguishes the discussed work from related
work using database technologies [3]-[6]. Both the soaDM
and ADM solutions divide the candidate node set into
“work units” which are processed through concurrent
mappers. Both solutions also “reduce” node/activation
computational results in the same general manner.

4. ADM Technical Details
The Accelerated Declarative Memory (ADM) system is
based on a MapReduce programming model implemented in
optimized C++. This section of the paper describes how
semantic networks are implemented using hash tables and
how parallel spreading activation and base level calculations
are realized in C++ threads using MapReduce.

 4.1. Restructuring DM using Hash Tables
ADM utilizes sets of hash tables with references to enable
rapid access into any portion of the semantic network. Hash
tables were chosen due to their constant lookup time,
making network access during retrieval direct and
independent of network size. ADM avoids the overhead of
iteration or message passing present in the CMU’s ACT-R
distribution and soaDM, respectively. The desired portion of
the network can be directly accessed in a maximum of two
hashing functions.

There are two critical hash tables that facilitate network
access. The first hash table consists of a Name to Node
(NTN) map, which maps node names to a reference with
their memory location. The NTN is used to verify the need
to add or merge an incoming piece of knowledge and to

In
de

pe
nd

en
t	 D

at
a	 E

le
m
en

ts

Map()

Map()

Map()

Reduce()

Reduce()

Map() In
te
gr
at
ed

	 C
om

pu
ta
tio

na
l	 R
es
ul
t

spread activation from context priming sources. Adding or
merging a node is defined by ACT-R [1], and Section 4.3.1
describes the NTN’s role during spreading activation.

The second hash table maps relations to a hash table of
nodes with the relation pointing to them. This hash table is a
Master Relation List (MRL). The MRL encompasses every
relation present in the semantic network. The value stored in
each MRL entry is another hash table, namely a Relation
List (RL). Fig. 4 shows the structure of the MRL and
corresponding RLs, as well as how they access the semantic
network.

Fig. 4. MRL and RL semantic network access.

Each RL contains the nodes that have nodes referring to
them (the head of the edge) through the particular relation. It
is critical that the RL be filled with nodes that have the
relation referring to them, rather than with nodes referring
away from themselves (the tail of the edge) through the
relation. The MRL and corresponding RLs facilitate
accessing all nodes that contain a relation to a particular
node. This represents one of ADM’s main performance
advantages; ADM can go from a retrieval requirement
directly to the relevant portion of the semantic network in
constant time.

 4.2. Optimizing Candidate Set Determination
Determining the nodes that fulfill all top-down constraints is
one of two critical retrieval steps. Candidate set
determination showcases one of ADM’s primary advantages
over ACT-R and soaDM. Note that every node in the
candidate set must fulfill every retrieval requirement. The
candidate set is always the intersection between each set of
nodes fulfilling a single retrieval requirement.

Consider the example described Table 2 with “type
proposition” and “has_person hippie” as retrieval
requirements. The proposition node has a fan of 1 million
nodes, and the hippie node has a fan of 25 nodes. Note that a
node’s fan is the number of nodes with edges that point to
this node (refer to Section 3.1 for details on fan). The
algorithm described below is executed sequentially.

In Table 2’s example, the candidate set is the set of nodes
that are connected to proposition through a type edge and
are also connected to hippie through a has_person edge. Let
P1 = { x is connected to “proposition” | x is connected
through “type” }, H1 = { x is connected to “hippie” | x is
connected through “has_person” }. Therefore, P1∩H1
represents the nodes fulfilling both requirements and is the
candidate set. Suppose |P1| is 200 nodes, |H1| is 10 nodes,
and |P1∩H1| is 3 nodes. Fig. 5 depicts these sets.

Fig. 5. Intersection of retrieval requirements.

Huge performance advantages could be gained by finding
the smallest set of nodes fulfilling a single retrieval
requirement (e.g., H1). Such a solution requires examining
node edges and introduces a heavy computational burden to
verify the smallest set has actually been found. However, a
good approximation can be rapidly verified by finding the
node specified in the retrieval requirements with the lowest
fan; fan represents the maximum number of nodes a
particular node could add to the candidate set.

Reexamining Table 2’s example, let P2 = { x | x is
connected to “proposition” }, H2 = { x | x is connected to
“hippie” }. P2 and H2 encompass the total number of nodes
connected to proposition and hippie, respectively. P2∩H2 is
the intersection between nodes connected proposition and
hippie through any relation, including type and has_person.
By definition, P1⊆P2, H1⊆H2, and (P1∩H1)⊆(P2∩H2). |P2|
= 1 million nodes (the fan of proposition), and |H2| = 25
nodes (the fan of hippie). The exact value of |P2∩H2| is not
important for this example, however |P2∩H2| must be ≥ 3
(as |P1∩H1| = 3).

Fig. 6 depicts the approximation. Selecting the node with
the lowest fan (e.g., hippie) reduces the number of nodes
that are checked for candidacy. In the example, it is the
difference between checking the candidacy of 25 nodes
versus 1 million nodes. Regardless of how many nodes are
checked for candidacy, only the 3 nodes fulfilling both
retrieval requirements (P1∩H1) will be added to the
candidate set.

Fig. 6. Intersection of retrieval requirements showing entire fan.

bank

park

forest

beach

…

outdoor_event

indoor_event

…

has_person

has_location

type

subclass_of

…

Master Relation List
“has_person” Relation List

“has_location” Relation List

“type” Relation List

p1

hippie

park

outdoor_event

ty
pe

has_person

ha
s_

lo
ca

tio
n

hippie

debutante

lawyer

...

P1P1

P1∩H1

H1

P1P2

P1∩H1

P2∩H2

H1 H2

ADM realizes this approximation by iterating over each
retrieval requirement, finding the corresponding node
through the MRL, and updating a reference to the node with
the lowest fan as needed. From the node with the lowest fan
(e.g., hippie), ADM applies each retrieval requirement as a
node filter. All nodes that survive filtering are added to the
candidate set. This effectively automates the swap of
retrieval requirements and node property filters utilized by
modelers using soaDM.

 4.3. Retrieval Execution in ADM
To minimize retrieval latencies, ADM supports two retrieval
execution modes: serial and parallel. Serial execution is best
suited for extremely small declarative memories where the
overhead of launching and synchronizing threads outweighs
the latency of retrieval. Parallel execution utilizes
MapReduce to divide portions of computation across
available resources. Parallel execution follows the same
algorithm as serial execution but across multiple threads.

4.3.1. Serial Retrieval Execution
ADM’s serial operation executes in the following order: (1)
nodes are added to the candidate set; (2) activation is
spread; (3) activation is computed; and (4) the node with the
highest activation is returned to working memory.

1. ADM’s serial operation begins by determining the
candidate set, as described in Section 4.2.

2. After determining the candidate set, activation is spread
from context priming sources. The NTN map facilities
finding the nodes in each context priming source, simply
by looking them up by name. In Table 3’s example,
fireman is found through the NTN, and nodes connected
to fireman through has_person receive appropriately
weighted activation, governed by the equations in Table
1. ACT-R is insensitive to the key in key/value
(relation/node) pairs describing context priming sources.
ACT-R behavior can be replicated in soaDM and ADM
by passing “‘*’” as the key [2]. Using ACT-R behavior,
every node connected to fireman receives appropriately
weighted activation.

3. Activation is computed for each node in the candidate
set, following the equations in Table 1. The node with
the highest activation is returned to working memory.

ADM’s serial execution describes how semantic
networks can realize ACT-R’s retrieval process utilizing
hash tables for network access. The serial execution
algorithm is utilized during parallel execution, but with the
MapReduce computing model to divide computation.

4.3.2. Parallel Retrieval Execution
Candidate set determination and activation computation can
greatly benefit from MapReduce. Each node in the network
operates as an independent data element. The ADM main
thread launches two threads to begin the concurrent retrieval
process: (1) a candidate set manager fill the candidate set
based on retrieval requirements and (2) a spreading
activation manager to spread activation from context

priming sources. In ADM’s MapReduce model, manager
threads act as reducers, and worker threads act as mappers.
Fig. 7 shows ADM’s parallel retrieval execution. Each
“Sync” line in Fig. 7 represents thread synchronization due
to data dependence before advancing execution. The
algorithm for ADM’s parallel execution is below in Fig. 7.

Fig. 7. ADM parallel retrieval execution.

1. The candidate set manager processes retrieval
requirements to fill the candidate set and acts as the
reducer for the candidate set determination. The node
with the lowest fan is found by iterating over the
retrieval request as described in Section 4.2. The
candidate set manager launches worker threads based on
the structure of the network surrounding the node with
the lowest fan. The number of workers launched is the
number of processor cores available in the system. Each
worker is assigned a portion of the relations coming into
the node with the lowest fan. Upon completion of each
worker, the candidate set manager collects the
candidates reported by each thread into the final
candidate set.

2. The spreading activation manager runs concurrently with
the candidate set manager and distributes activation from
context priming sources. The execution of spreading
activation follows the description in Section 4.3.1. Only
one thread is reserved to spread activation due its simple
computation.

3. Once the candidate set and spreading activation
managers finish, execution returns to the main ADM
thread. Every node in the candidate set must re-compute

ADM main thread

ADM main thread

ADM main thread

Retrieval request
recieved

Winning node
placed in memory

Node with lowest
fan found

Context priming
spread

Candidate set
manager

Candidate set
manager

Candidate set
worker1

Candidate set
worker2

Candidate set
workern

Spreading
activation manager

. . .

Activation
worker1

Activation
worker2

Activation
workern

. . .

Sync

Sync

Sync

its activation. Activation calculation is split among
worker threads to saturate all available processor cores.
Each worker launched is responsible for computing a
section of the candidate set. Each thread reports their
winning node, and the ADM main thread returns the
node with the highest activation to working memory.

During candidate set determination and spreading
activation, more threads than available processor cores are
in execution. The execution of candidate determination and
spreading activation is highly variable based on the structure
of the network and the specific retrieval request. However,
determining candidates is a substantially heavier
computational burden than spreading activation. To
maximize CPU saturation during the entire retrieval process,
the number of threads launched overshoots the number of
processor cores available by 1. The additional thread is
reserved for spreading activation. ADM relies on the
operating system scheduler to appropriately allocate
resources.

5. Experimental Setup
In order to meaningfully compare soaDM and ADM, the
analysis described by [2] was replicated. The testing
computer had an Intel Xeon W5590 with 48GB (12x4GB)
of 1333MHz RAM running Ubuntu 14.04 LTS. The
declarative memory parameters and retrieval requests were
identical in all tests. The ontology sources, number of nodes
computing activation, and retrieval requests are shown in
Table A1. Because each retrieval request contained only one
retrieval requirement, the speedup ADM produced is due to
ADM’s optimized MapReduce model, not from the
algorithm to select the optimal starting node outlined in
Section 4.2.

6. Results
Fig. 8 concisely shows that ADM achieved a roughly 20
times performance increase over soaDM.

Fig. 8. Performance comparison of soaDM and ADM.

ADM was able to coordinate the full ACT-R activation
calculation across 1.3 million nodes in less than 200ms.
Parallel ADM performed approximately 6 times faster than
serial ADM over 1.3 million nodes computing activation.
ADM’s serial execution was optimal when 15 nodes
computed activation.

Each retrieval was executed 60 times, and Fig. 8 shows
the average over the 60 retrievals. It is worth noting that
soaDM is inherently parallel; Erlang automatically
distributes activation calculation among available resources.
The evaluation between soaDM and parallel ADM is the
appropriate performance comparison.

 6.1. ADM Comparison to other DM Systems
ADM utilizes a highly optimized MapReduce programming
model. The data structures, parallel processing, and
execution were specifically designed to support the ACT-R
retrieval calculus. ADM performs the full ACT-R retrieval
process. SemMemDB from [6] illustrates an interesting
method to compute spreading activation in database
systems. However, SemMemDB offers no apparent method
of enforcing top-down constraints. soaDM enforces top-
down constraints by spreading an activation of 0 only to
nodes connected along the relation specified in the top-
down constraint, as described in [2]. SemMemDB appears
to only be capable of spreading activation, including 0, to
every node connected to the context-priming source node,
rather than only the nodes connected through the specified
relation. ADM realizes the same top-down constraint
enforcement through the MRL.

To understand the performance advantages ADM presents
over soaDM, the Erlang-based soaDM needs to be revisited.
soaDM facilitates network access and activity through
supervisor threads [2]. These supervisor threads utilize
Erlang’s built-in message passing to wake the desired
portion of the semantic network. However, Erlang’s
message passing requires each message being copied from
sender to receiver. Locks, mutexes, and shared memory are
not required in this model at the expense of copying data
with every message passed. The exact messages sent during
soaDM’s retrieval are described in [2].

The MRL and NTN enable direct access to subsections of
the network at a time, similar to soaDM waking subsections
of the network. However, ADM avoids the overhead of
message passing; each incoming retrieval request is treated
as static, read-only data. ADM also benefits from the speed
C++ provides through direct memory references. The MRL
and NTN traverse the network using references; accessing
network routes is incredibly inexpensive. Shared, read-only
data is routed throughout ADM’s execution using
references. Each directed edge in the network is achieved
through a reference to the head node and tail node. These
design decisions enable ADM’s rapid network traversal.

The algorithm in Section 4.2 shows ADM will
automatically find the optimal starting node (the node with
the lowest fan) for determining the candidate set. From this
perspective, the distinction between retrieval requirements

0

500

1000

1500

2000

2500

3000

3500

0 200 400 600 800 1000 1200 1400

A
ve

ra
ge

 r
et

ri
ev

al
 ti

m
e

ov
er

 6
0

re
tr

ie
va

ls
 (m

s)

Number of nodes computing activation (thousands)

soaDM

Serial ADM

Parallel ADM

and node property filters is diminished in ADM. The
modeler no longer needs to be concerned with the structure
of the knowledge to minimize retrieval latency. It is critical
to note that ADM finding the optimal starting node only
presents an advantage over soaDM when: (1) there is more
than one retrieval requirement and (2) the modeler does not
utilize or does not optimally swap retrieval requirements
and node property filters.

7. Conclusion
ADM constitutes another step towards creating a declarative
memory that can store and retrieve knowledge on massive
scales while maintaining real-time performance. The use of
a semantic network and MapReduce offers substantial
performance gains over traditional ACT-R. ADM optimizes
the retrieval process in multiple ways: (1) enabling constant
time lookup of any section of the network; (2) traversing
knowledge through references rather than iteration or
message passing; and (3) guaranteeing the optimal starting
node for candidate set determination.

ADM constitutes a complete reconsideration of how to
store and access declarative knowledge to lower retrieval
latencies. Access to larger declarative memories gives
agents the ability to react appropriately in real-time to a
wider variety of situations. Cognitive modelers will be able
to build applied models and agents that employ declarative
knowledge bases composed from sources such as OpenCyc,
WordNet, domain ontologies such as the Suggested Upper
Merged Ontology (SUMO), and the semantic web.

Future work will focus on parallelizing candidate set
determination and activation calculation in specialized
hardware. ADM is currently being implemented to harness a
GPGPU through CUDA. Leveraging the parallelization
present in GPGPUs will further increase the scale of
knowledge that ADM can support. ADM’s serial, parallel,
and CUDA implementations will be combined to minimize
the retrieval time. Future work should also include a
comparison of the optimized starting node for candidate set
determination described in Section 4.2. The

implementations presented in [2]-[6] should be carefully
evaluated and compared against ADM’s retrieval
optimizations.

Acknowledgements
Described research was partially supported by the Air

Force Office of Sponsored Research (AFOSR) Repperger
internship program and the Department of Energy Oak
Ridge Institute for Science & Education (ORISE) program.

References
[1] Anderson, J. R. How Can the Human Mind Occur in the

Physical Universe? New York: Oxford University Press. 2007
[2] Douglass, S. A. & Myers, C. W. “Concurrent knowledge

activation calculation in large declarative memories.” In D. D.
Salvucci & G. Gunzelmann (Eds.), Proceedings of the 10th
International Conference on Cognitive Modeling (pp. 55-60).
Philadelphia, PA. 2010

[3] Douglass, S., Ball, J., & Rodgers, S. “Large declarative
memories in ACT-R.” In Proceedings of the 9th International
Conference of Cognitive Modeling (paper 234). 2009.

[4] Derbinsky, N., Laird, J. E., & Smith, B. “Towards Efficiently
Supporting Large Symbolic Declarative Memories.”
Proceedings of the 10th International Conference on
Cognitive Modeling. Philadelphia, PA. 2010.

[5] Salvucci, D. D. “Endowing a cognitive architecture with
world knowledge.” Proceedings of the 36th Annual Meeting
of the Cognitive Science Society. Quebec City, Canada. 2014.

[6] Chen, Yang, Milenko Petrovic, and Micah H. Clark.
“SemMemDB: In-Database Knowledge Activation.”
Proceedings of the 27th International Florida Artificial
Intelligence Research Society Conference. 2014.

[7] Logan, M., Merritt, E. & Carlsson, R. Erlang and OTP in
Action. Manning Publishing Co. Stamford, CT. 2010.

[8] Taha, T. M., Atahary, T. & Douglass, S. A. “Hardware
Accelerated Cognitively Enhanced Complex Event
Processing Architecture,” Proceedings of the 14th
IEEE/ACIS, Honolulu. 2013.

[9] Dean, J., & Ghemawat, S. “MapReduce: simplified data
processing on large clusters.” Communications of the ACM,
51(1), 107-113. 2008.

Appendix
Table A1. Retrievals executed during soaDM and ADM comparison. Each retrieval was executed 60 times. The Fan Effect ontology is
provided by the CMU ACT-R distribution. MobyII Thesaurus sources were segmented as described in [2].

Ontology source Nodes computing activation Retrieval requirements Context priming sources W N
Fan Effect 15 type event has_person hippie

has_location park
1 3

Moby II (1 in 3) 145,073

type synonym_relation ‘*’ taxing
‘*’ demanding
‘*’ straining

1 4

Moby II (1 in 2) 318,435

type synonym_relation ‘*’ mazy
‘*’ whimsical
‘*’ flighty

1 4

Moby II (1 in 1) 1,281,763

type synonym_relation ‘*’ mazy
‘*’ whimsical
‘*’ flighty

1 4

