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Abstract— Learning complex robot manipulation policies for
real-world objects is challenging, often requiring significant
tuning within controlled environments. In this paper, we learn
a manipulation model to execute tasks with multiple stages
and variable structure, which typically are not suitable for
most robot manipulation approaches. The model is learned
from human demonstration using a tactile glove that measures
both hand pose and contact forces. The tactile glove enables
observation of visually latent changes in the scene, specifically
the forces imposed to unlock the child-safety mechanisms of
medicine bottles. From these observations, we learn an action
planner through both a top-down stochastic grammar model
(And-Or graph) to represent the compositional nature of the
task sequence and a bottom-up discriminative model from the
observed poses and forces. These two terms are combined
during planning to select the next optimal action. We present
a method for transferring this human-specific knowledge onto
a robot platform and demonstrate that the robot can perform
successful manipulations of unseen objects with similar task
structure.

I. INTRODUCTION

Consider the task of opening medicine bottles that have
child-safety locking mechanisms (Fig. 1(a)). These bottles
require the user to push or squeeze in various places to
unlock the cap. By design, attempts to open these bottles
using a standard procedure will result in failure. Even
if the agent visually observes a successful demonstration,
imitation of this procedure will likely omit critical steps
in the procedure. The visual procedure for opening both
medicine and traditional bottles are typically identical. The
agent lacks understanding of the tactile interaction required
to unlock the safety mechanism of the bottle. Only direct
observation of forces or instruction can elucidate the correct
procedure (Fig. 1(e)). Even with knowledge of the correct
procedure, opening medicine bottles poses several manipu-
lation challenges that involve feeling and reacting to the in-
ternal mechanisms of the bottle cap. Although the presented
study takes opening medicine bottles as an example, many
other tasks share similar properties and require non-trivial
reasoning such as opening locked doors [1].

In this paper, we learn a manipulation model from human
demonstration that captures observed motion and kinematics,
as well as visually latent changes such as forces and internal
state (Fig. 1(e)). We learn this manipulation model for objects
that have similar functional properties, but exhibit different
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Fig. 1: Given a RGB-D-based image sequence (a), although
we can infer the skeleton of hand using vision-based methods
(b), such knowledge cannot be easily transferred to a robot
to open a medicine bottle (c), due to the lack of force
sensing during human demonstrations. In this work, we
utilize a tactile glove (d) and reconstruct both forces and
poses from human demonstrations (e), enabling robot to
directly observe forces used in demonstrations so that the
robot can successfully open a medicine bottle (f).

geometries and internal configurations that affect how the
object must be manipulated.

Two key problems are discussed in this paper:
1) how to naturally recover the visually latent force data

from the human demonstrations, and
2) how to represent such knowledge and successfully trans-

fer it to a robot?
For the first problem, although some initial results have

been reported to reconstruct poses and/or forces exerted by
the demonstrator using vision-based methods [2], [3], [4],
[5], [6], these methods still have difficulty providing pose
and force data precise enough for robot learning. Instead, we
utilize an open-source tactile glove [7] designed to measure
both hand pose and contact forces across the surface of
the hand. These demonstrations are performed naturally, and
within a motion capture setup to obtain ground-truth tracking
of the objects and human wrist.

For the second problem, our system takes into consider-
ation: i) an And-Or-Graph (AOG) [8] learned from human
demonstrations as top-down knowledge for manipulations of
an unseen medicine bottle, in which the AOG model uses
fluents [9] to model the changes between pre- and post-



conditions of demonstrations in a low-dimensional subspace;
and ii) A bottom-up process learned from raw signal data
when robot executes to encode transition between pre- and
post-conditions. Together, these two processes learn a ma-
nipulation model to open medicine bottles.

A. Related Work
Tactile Gloves are common tools to capture demonstration

data [10]. In this paper, we use a tactile glove [7] to
record both human pose and visually hidden forces applied
at each proximal and distal phalange, as well as a 4-by-
4 grid of sensors to detect forces exerted by the palm. In
the literature, most data gloves use IMUs [11], [12], [13]
or curvature sensors [14], [15] to track finger pose. To read
force, FlexiForce [16] sensors or Velostat [17], [18], [19] are
commonly adopted.

Learning from demonstration (LfD) is a crucial com-
ponent to building general purpose robots, and a very broad
field with rich history. This literature is too expansive to
survey here; we refer readers to a survey [20]. Instead,
we focus on approaches related to our work: kinesthetic
teaching, teleoperation, and imitation learning in the next
paragraphs. Note that humans are able to learn quickly from
one or only a few examples for a new task [21], thus teaching
robots to achieve similar performance would enable robots
to enter many routine human activities. In this paper, our
approach requires a relatively small number of examples,
approximately 10 examples per bottle.

Kinesthetic teaching and teleoperation both enable di-
rect mappings between demonstrations and executions [20]
and have successfully demonstrated capability of learning
both motor skills [22], [23] and manipulation policies [24],
[25]. However, this direct embodiment mapping, a typically
complex function that maps states/actions in demonstra-
tions to states/actions on the robot [20], is ill-suited for
manipulation tasks that incorporate forces. Although some
robots have built-in force sensing, the demonstrator often
cannot receive feedback from forces applied. To address this
problem, Kormushev et al. [26] used kinesthetic teaching to
demonstrate positional requirements of a task and employed
a secondary haptic demonstration to provide required forces.
In contrast, our approach simultaneously integrates both
poses and forces within a single demonstration using a tactile
data glove, providing a more natural and efficient way to
sense force from a demonstration.

Imitation learning has two main streams: i) behav-
ior cloning through supervised demonstrations that directly
mimic the demonstrator’s behaviors [27], [28], [29], [30],
[31], [32], [33], [34], and ii) inverse reinforcement learn-
ing [35], [36], [37]. While inverse reinforcement learning
is limited to Markvoian problems, our approach falls into
behavior cloning and is capable of handling both Markovian
and non-Markovian problems by utilizing a grammar model.

Two previous work stands out as most relevant to the
presented work. Huang et al. [38] use imitation learning
coupled with a data glove for opening a set of standard
bottles without understanding the internal configuration.
This simplification is infeasible when dealing with locking
mechanisms of medicine bottles, which require direct and
complex manipulation of the cap beyond pure rotation. Sung

et al. [39] uncovered haptic components of a task from
teleoperated demonstrations. In contrast, our work learns
the manipulation tasks directly from human demonstration
using a tactile glove, resulting in more natural and larger
variety of demonstrations. In addition, Sung et al. used a
recurrent neural network based method that typically only
encodes a few steps of dependencies. However, our work
uses an explicit grammar to generate actions, capable of
incorporating long-term temporal dependencies.

B. Contribution

This paper makes four contributions:
1) Using a tactile glove during demonstrations that enable

the robot to utilize both the poses and forces exerted
by the demonstrator. In contrast with previous work,
our method focuses on integrating visual measurements
with physical measurements not observable from vision
(e.g. forces), capturing latent relationships that are imper-
ceptible from vision alone.

2) Learning a stochastic grammar model that represents
the compositional task hierarchy comprising of atomic
actions for manipulation tasks, compactly capturing the
admissible sequence of actions for all the bottles demon-
strated.

3) Learning a bottom-up process that encodes raw haptic
signals to account for the transition from a previous state
to a new state. Together with the stochastic grammar
model as a top-down process, these two processes jointly
form the manipulation model.

4) Transferring the learned model from human demonstra-
tions onto a Baxter robot by solving a correspondence
problem [40]. This embodiment mapping function di-
rectly relates hand pose and contact force from the
human to the force-torque sensing and gripper state of
the robot; enabling the robot to reason about its haptic
measurements using the relations learned from human
demonstration.

C. Overview

In this paper, we use human demonstrations to learn a
manipulation model based on an AOG representation that
integrates both poses and forces. Section II outlines the
AOG representation and related components. Section III
discusses our data collection environment, instruments, and
procedures. In Section IV, we present how to learn an AOG
representation from demonstrations, and how to combine it
with raw signals using a bottle-up process to infer the next
action. Section V outlines our robotic system and execution
framework. In Section VI, we show the results of the system,
showcasing our system that integrates both pose and force
outperforms the baseline systems. Finally, we conclude and
discuss the results in Section VII.

II. REPRESENTATION

We represent a task demonstrated by agents using an AOG
consisting of: i) spatial knowledge to encode the poses of
objects and manipulators, and ii) temporal knowledge to
encode action sequencing.



Fig. 2: An example of parse graph. Actions are executed in
temporal order from left to right.

A. And-Or Graph (AOG)
An AOG is a graph-based grammar [8] encoding com-

positional variability in the demonstrated task sequences.
Formally, an AOG G is represented by a 4-tuple:

G= 〈U, V,∆,ΩF 〉. (1)
An And-node u∈U represents a decomposition of the graph
into sub-graphs, and an Or-node v ∈V acts as a switch
among multiple alternate sub-configurations. The terminal
nodes ∆ is a set of sub-components representing the lowest
level of resolution in the graph. ΩF represents a set of
attributes derived from the terminal nodes. In the context of
opening bottles, ∆ = {a1, . . . , am} corresponds to a set of
atomic actions (Section II-B) executed during the task, and
ΩF is a set of fluent functions (Section II-C) that operate on
terminal nodes.

A parse graph, denoted pg, is a specific parse of the AOG
by selecting a sub-configuration at each Or-node in the graph.
An example of a pg is shown in Fig. 2, simultaneously
incorporating both spatial and temporal knowledge, where
the spatial knowledge captures the physical configuration of
the robot environment and fluents, and temporal knowledge
encodes the sequence of atomic action to complete the task.

B. Atomic Actions
The concept of atomic actions [41] or action primi-

tives [42] were proposed in the computer vision community.
They are equivalent to the concept of movement primitives
in robotics literature [43], [44] and represent the finest
resolution of an action sequence. In this paper, both the
human and robot actions are modeled using atomic ac-
tions. We aggregate each observed atomic action ahk from
the demonstration to form the human dictionary of atomic
action ∆h = {ahk} and endow the robot with a dictionary
of atomic actions, denoted ∆r = {ark}. Here, the subscript
k indicates the k-th atomic action in the action sequence.
The correspondences between human and robot action labels
were manually mapped. Each atomic action represents a 4D
human-object interaction (4DHOI) unit, as in [45].

C. Fluents
From the human demonstrations, an auto-encoder is

trained to embed the space of observed hand geometries,
force distributions and the corresponding action label into a
low-dimensional subspace. Changes in this low-dimensional
subspace correspond to fluent changes. Each fluent function
maps the high-dimensional scene configuration, sk, to a real
value, f(sk) 7→R. A fluent change represents a transition be-
tween two scene configurations, ∇f(si, sj) = f(sj)−f(si).

Fig. 3: Bottles used in experiments with different safety
mechanism: (1) push-and-twist, (2) pinch-and-twist, (3)
push-and-twist, and (4) push-and-twist. (5) Bottle with no
safety mechanism.

For generality, we denote the action at step k as ak, regard-
less of whether the action was performed by a human or
robot. We denote the scene configuration of the pre-condition
as sk and the post-condition as sk+1. Each action can be
characterized by the changes it imposes across all fluents,
denoted ∇fak = {∇fi(sk, sk+1), i= 1...n}.

Using this notion of fluent changes, the AOG encodes
perceptual causality [46], represented by state changes be-
tween terminal nodes. We express this causal change as a
structured equation model (SEM) [47]; i.e., fk+1 = gak(fk).
This definition relies on the assumption that the human
demonstrator/robot is the only causal agent in the environ-
ment and the inertia action assumption [48]. These two
assumptions imply a perceptual causal chain between the
agent’s previous action and the next action; i.e., the post-
condition fluents of the previous action are the pre-condition
fluents of the current action, depicted by the chain of fluents
in Fig. 2.

III. DATA COLLECTION

A human demonstrator performed opening various types
of bottles shown in Fig. 3. Some of the bottles contain child-
safety locking mechanisms that require a procedure beyond
simply twisting to unscrew the cap. Most child-safety locks
require a particular force to be exerted on a particular part
of the bottle. These forces are difficult to infer from visual
observation alone. We collected human data on bottles 2, 3,
and 5. The remaining bottles were reserved for testing.

a) Tactile Glove: We use a tactile glove [7] to capture
these applied forces. The glove reconstructs the pose of each
finger using IMUs and detects forces using Velostat sensors
on the palm and phalanges. This glove provides 71 degrees of
freedom including all pose and force measurements, resulting
in an accurate model of the pose of the hand and the forces
exerted by each phalange.

b) Experiment Setup: A Vicon motion capture system
is used to record the ground truth of poses. The experimental
setup is shown in Fig. 4. Fiducials are attached to each bottle
and its lid to track the pose of object parts. One additional
fiducial is attached to the back of the tactile glove to capture
wrist pose in world space. A camera is used to record the
video of data collection procedures to help label the ground
truth later.

c) Data Collection: Approximately 10 trials are col-
lected for each grasping strategy for each bottle. Examples
are shown in Fig. 5. Bottle 2 only has one grasping strategy:
pinch-and-twist. Bottle 3 has two different strategies: push-
and-twist using the palm, or push-and-twist using fingers.
Bottle 5 has three valid strategies because it lacks a safety
mechanism: twist, push-and-twist, or pinch-and-twist.



Fig. 4: We use a Vicon system to obtain the poses of human’s
wrist and object’s parts. The camera is used to record the data
collection procedure. The data is collected on bottles (2), (3)
and (5), which require pinch-and-twist, push-and-twist and
twist to open, respectively.

Each demonstration is manually labelled, mitigating the
correspondence problem between a human action and a robot
action. The timestamps of the labeling provide the transition
boundaries between actions, i.e., the post-condition of the
labelled action and the pre-condition of the next action.

IV. IMITATION LEARNING

A. Problem Definition
The planning objective is to find the best next action a∗k+1

given the observed partial parse graph pgk = (a0, . . . , ak).
The pg is planned within the pre-defined action space, and
fluents are used as observations. We plan this problem by
minimizing the energy of the partial parse graph at each
time step:

p(pgk+1|pgk, fk) =
1

Z
exp{−E(pgk+1|pgk, fk)}, (2)

where Z =
∑
pgk+1

exp{−E(pgk+1|pgk, fk)} is the partition
function. We decompose the energy of the parse graph into
a top-down term and a bottom-up term, and adopt the notion
of top-down and bottom-up as γ and β channels [49] of
influence for inference in And-Or graphs, respectively. We
define E(pgk+1|pgk, fk) as
E(pgk+1|pgk, fk)= Eγ(pgk+1|pgk)+Eβ(pgk+1|pgk, fk), (3)
where Eγ(pgk+1|pgk)=− log [p(pgk+1|pgk))] , (4)
Eβ(pgk+1|pgk, fk)=− log [p(ak+1|ak, fk)] , (5)

which incorporates two action planning mechanisms:
• Top-down Term: p(pgk+1|pgk) plans the next action

given the sequence of previous actions. It represents the
long-term relation between all the previous actions and
the next action. In this paper, an action grammar repre-
sented by AOG is first induced using all the valid action
sequences. An Earley parser [50] is then adopted to parse
the likelihood. See details in Section IV-B.

• Bottom-up Term: p(ak+1|ak, fk) plans the next ac-
tion using both the current action label and observed fluent.
This term encodes a short-term relation using the current
fluent in addition to the pose and force pose sensing. In
this paper, we convert this planning task to a classification
problem, using a neural network to select the action with
highest probability. See details in Section IV-C.

Fig. 5: The tactile glove computes the pose of human’s pha-
lanxes according to the pose of human’s wrist and measure
the force applied on human’s hand.

B. Action Planning using AOG
a) AOG Induction: From labelled action sequences

of human demonstration, an action grammar G represented
by AOG is induced using method presented by Tu et
al. [51], resulting in a stochastic context-free grammar with
probabilistic Or-nodes. Examples are shown in Fig. 6. The
objective function is the posterior probability of the grammar
given the training data X:

p(G|X)∝ p(G)p(X|G) =
1

Z
e−α||G||

∏
pgi∈X

p(pgi|G), (6)

where pgi = (a1, a2, . . . , am)∈X represents a valid parse
graph of atomic actions with length m from the demonstrator.

b) Top-down Parsing Likelihood: Given the learned
AOG G, for a grammatically complete parse graph s=
(a0, . . . , aK), the parsing likelihood is simply the Viterbi
likelihood, denoted by p(s). For an incomplete parse pgk =
(a0, . . . , ak) with length of k <K, the parsing likelihood is
given by the sum over all grammatically possible actions
sequences that begin with pgk:

p(pgk) =
∑

s∈G,sk=pgk

p(s), (7)

where pgk denotes the first k actions in the parse graph pg.
By computing p(pgk+1) and p(pgk) using the Earley parsing
likelihood, we compute the top-down term, p(pgk+1|pgk),
through Bayes’ rule. The top-down term encodes long-range
temporal constraints induced by the AOG.

C. Action Planning using Fluents
We use tactile glove measurements and haptic feedback

signals to learn: i) a low-dimensional embedding of the
human demonstration, ii) a bottom-up term to plan the next
action based on the low-dimensional human embedding, and
iii) an embodiment mapping between the robot and the low-
dimensional human embedding.

a) Low-dimensional Embedding: We use an auto-
encoder to encode the scene configuration into a low-
dimensional representation as fluents (Fig. 7(a)). Changes
inside this subspace are treated as fluent changes and are
used to infer the next action with observed haptic feedback
from the robot. Within this subspace, we train a bottom-up
term, p(ak+1|ak, fk), to plan the next action using haptic
observations of the post-condition of the previous action.

The contact force and pose measurements from the tactile
glove are reoriented to the reference frame of the wrist, and
concatenated into a feature vector with 159 dimensions. An
encoder-decoder architecture, illustrated in Fig. 7(a), is used
to learn a 8-dimensional embedding and reconstructs the full
feature from this embedding under a criterion that minimizes
the squared residuals between the original feature and the



Fig. 6: AOG induced from human demonstrations using 1 example (a), 5 examples (b), 36 examples (c), and 65 examples
(d). (d) also shows Fig. 2 parsed in an AOG, highlighted in red. Numbers indicate temporal ordering of atomic actions.

reconstruction:

l(θ;xh) =
1

N

N∑
i=1

(xhi −ψ(xhi ; θ))2, (8)

where xhi represents one of the N human demonstrations
and ψ(xi; θ) represents the reconstruction.

b) Bottom-up Action Planning: The bottom-up term
p(ak+1|ak, fk) takes the form of a multi-class classifier
to plan one of the 13 output actions (Fig. 7(b)). This
classification network takes its input from the embedding
layer of the auto-encoder and a one-hot encoding of the
current action. A softmax layer is used to interpret it as
a probability distribution, and the network is trained by
minimizing the normalized cross-entropy. All internal layers
are linear matrix operators, and use sigmoids for their non-
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robot sensing human embedding

7 8
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human embedding
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reconstruction

256

21

32 32
64

159
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Fig. 7: (a) Autoencoder to project human demonstration into
low-dimensional subspace. (b) Classifier used to plan the
next action using a low-dimensional embedding of human
tactile feedback. (c) Embodiment mapping used to map
robot states to equivalent human demonstration states. Each
rectangle represents a vector, and each corresponding number
is the length of the vector. The green rectangle represents the
low-dimensional human embedding vector.

linearities. Combined with the low-dimensional embedding,
the bottom-up term incorporates raw tactile signals during
manipulations, thus complementing the top down constraints
from the action grammar parsing.

c) Embodiment Mapping: The embodiment mapping
seeks a function sh = φ̂(sr), where sh represent the human
state of the demonstration and sr represents the robot’s state
during execution (Fig. 7(c)). This function maps haptic sens-
ing on the robot to the low-dimensional embedding of tactile
measurements from the human demonstration. A neural
network is trained to approximate this function using a small
number of robot examples (approximately 15 examples). We
supervise robot executions sampled from the learned AOG
using the robot’s dictionary ∆r to ensure only successful
robot states are mapped to successful demonstrator states.
The loss function for this network is the squared residuals:

l(θ;xh,xr) =
1

N

N∑
i=1

(φ(xhi )− φ̂(xri ; θ))
2, (9)

where xh represents human states, xr represents equivalent
robot states, φ represents the low-dimensional embedding
of human data, and φ̂ represents the embodiment mapping
function. The robot utilizes this mapping to plan the next
action using the bottom-up term: first map its state to an
equivalent human state, then use the human state to plan
which action to execute using the bottom-up action planner.

V. IMPLEMENTATION

A. Robot Platform Setup
We use a dual-armed 7-DoF Baxter robot from Rethink

Robotics mounted on a DataSpeed Mobility Base as our
robot platform. The robot is equipped with a ReFlex Tack-
kTile gripper on the right wrist, and a Robotiq S85 parallel
gripper on the left. In addition, we use Simtrack [52] for
object pose estimation and tracking with a Kinect One sensor.
The entire system runs on ROS [53], and arm motion plan-
ning is computed using MoveIt! [54]. For object grasping,
we implement a geometry based grasping planner to generate
grasping poses from CAD models of the objects.



Fig. 8: System architecture. Blue: action planning using
fluents as a bottom-up process. Red: action planning using
AOG as a top-down process. Green: action planning. Brown:
robot execution.

B. System Architecture
The system architecture consists of three major compo-

nents shown in Fig. 8:
• Learning: The learning phase includes a top-down process

and a bottom-up process. The top-down representation
is built from segmented human demonstrations, and an
AOG is induced to represent valid action sequences (see
Section IV-B). To learn the bottom-up knowledge, three
neural networks are trained from raw sensor data (see
Section IV-C).

• Inference: During the inference, the top-down term is
computed by the Earley parser. The embodiment mapping
and classification network are used to compute the bottom-
up term, as outlined in Section IV-A. We plan the next
action using Equation 2 with the corresponding top-down
and bottom-up terms.

• Execution: Robot executes the next action either by sam-
pling the AOG, using haptic feedback, or both according
to Equation 2.

VI. EXPERIMENTS AND RESULTS

A. Experiment Setup
Five bottles were used in the evaluation as shown in Fig. 3.

Bottles 2, 3, and 5 were used during data collection, while
the remaining bottles were reserved for testing. Bottles 1, 2,
3, and 4 all have safety mechanisms while bottle 5 does not.

An action sequence is deemed successful if the robot opens
the bottle; otherwise, the sequence is a failure. If the robot
opens the bottle before finishing the sampled execution, we
consider the action sequence that it performed is correct
and discard remain actions. We conducted over 300 opening
experiments over all of the bottles, resulting in three groups
of quantitative results. Each bottle was tested approximately
60 times.

B. Evaluation Criteria
While there may be multiple ways to open each bottle, not

all methods are considered equivalent. For instance, Bottle
5 has no safety mechanism, so while push-and-twist and
pinch-and-twist may succeed in opening bottle 5, there is no
reason to execute anything other than twist. This distinction
naturally leads to two levels of evaluation criteria: i) by the
end results only, i.e., whether a sequence of actions can

successfully open a bottle, and ii) not only successfully open
a bottle but also efficiently.

As illustrated above, human demonstrator is treated as
an oracle and the corresponding action sequences as perfect
executions. We separate robot executions into four different
categories:
1) Success, where the robot successfully executed an action

sequence that is an exact match to one of the sequences
from the human demonstrator;

2) Success, but using at least one extra or wrong action;
3) Failure due to using the wrong action sequence; and
4) Failure due to improper execution (e.g. low motor execu-

tion accuracy or grasping failure).

C. Qualitative and Quantitative Results
For qualitative analysis, Fig. 9 shows the robot suc-

cessfully opening two bottles with (Fig. 9(a)) and without
(Fig. 9(b)) pushing the bottle lid. The force-torque sensor
readings reflect distinguishable differences between perform-
ing push-and-twist (Fig. 9(c)) and twist (Fig. 9(d)).

We set up three groups of experiments for quantitative
results analysis. Table I shows the results of using top-down
only planning, in which the robot executes a sampled action
sequence only from the AOG. This method describes the
order in which actions were executed but does not capture
haptics during manipulations.

Table II shows the results of using bottom-up only plan-
ning. This method incorporates the haptic feedback from the
robot sensing, but lacks long-term temporal constraints from
the AOG, i.e., it executes a Markovian planning process, in
which the next action is determined by the previous action
and the current observations as outlined in Section IV.

Table III shows the results of integrating both the top-down
planning provided by the AOG and the bottom-up haptic
feedback. By utilizing both terms, the temporal sequence of
actions is not generated only by sampling from the AOG;
instead, each action is generated sequentially by minimizing
Equation 2.

The proposed top-down and bottom-up planning (Ta-
ble III) yields large performance improvements over either

TABLE I: Baseline 1, top-down only planning
Evaluation bot. 1 bot. 2 bot. 3 bot. 4 bot. 5

Success 8.7% 5.6% 4.4% 8.7% 26.1%
Success (extra/wrong) 21.7% 5.6% 34.8% 47.8% 39.1%
Failure (action) 69.6% 77.7% 60.8% 34.8% 30.4%
Failure (execution) 0% 11.1% 0% 8.7% 4.4%

TABLE II: Baseline 2, bottom-up only planning
Evaluation bot. 1 bot. 2 bot. 3 bot. 4 bot. 5

Success 4.4% 0% 4.4% 0% 4.4%
Success (extra/wrong) 13% 11.8% 30.4% 42.9% 17.4%
Failure (action) 82.6% 76.4% 65.2% 57.1% 78.2%
Failure (execution) 0% 11.8% 0% 0% 0%

TABLE III: Proposed, top-down and bottom-up planning
Evaluation bot. 1 bot. 2 bot. 3 bot. 4 bot. 5

Success 8.7% 17.6% 17.4% 20% 60.9%
Success (extra/wrong) 52.2% 17.6% 65.2% 73.3% 17.4%
Failure (action) 39.1% 64.8% 13% 6.7% 21.7%
Failure (execution) 0% 0% 4.4% 0% 0%



(a) (b)

(c) (d)

Fig. 9: (a) Robot opening bottle 3, showing actions approach, push, twist, and pull from left to right. (b) Robot opening
bottle 5, showing actions approach, grasp, twist, and pull. Force-torque sensor readings while opening bottle 3 (c) and bottle
5 (d), showing clear, distinguishable differences from raw sensor data.

the top-down (Table I) or bottom-up (Table II) only method.
The rate of Success and Success with extra/wrong are
dramatically improved while the failure rate due to wrong
actions sequences drops significantly.

D. Discussion
a) Why it is important to integrate both top-down
and bottom-up terms? In our proposed method, top-
down planning generates an action from the non-Markovian
AOG, while the bottom-up planning formulates a Markovian
process according to robot’s haptic feedback. These two
processes are complementary to each other and crucial to
correctly executing a manipulation task. Specifically, i) the
top-down term represents the structure of the task, generating
the next action based on previous semantic knowledge and
preventing executing irrelevant actions. ii) The bottom-up
term encodes real-time sensing information, capturing subtle
interactions during manipulations. By combining these two
terms, our method is capable of learning from small exam-
ples of human demonstrations and planning actions on the
fly based on task structure and real-time haptic sensing.
b) Why the success rate of bottle 2 is low? The robot
has no haptic feedback and geometry information prior to
touching the bottle with its gripper. By sampling the first
action after approach from the AOG, the probability to plan
pinch is around 15%, due to the frequency in the human
demonstrations. While not reported in Table III, the perfect
successful rate for bottle 2 is 100% if the first action after
approach is pinch. Other work [55] has augmented AOG
nodes with attributes to turn the AOG into a context-sensitive
grammar. A context-sensitive grammar would increase per-
fect success rates by considering the type of bottle directly in
the top-down term, rather than our current method implicitly
inferring the bottle type from haptic feedback.
c) Can the robot derive novel manipulations that are not
presented in human demonstrations? In our opinion,
there are at least two types of novel manipulations that a
robot can derive from human demonstrations: i) generating
new action sequences, and ii) generating new actions. In this
paper, the proposed method demonstrates the capability of

generating novel action sequences through a compositional
grammar. However, generating new actions is much more
difficult, as the structure and capability of human hands and
robot grippers could be dramatically different. For instance,
a human demonstration may need to twist twice to open
a bottle lid, while a robot gripper may only need to twist
once, since some robot grippers are capable of rotating with
more freedom than human wrist. Such differences lead to
the different success rates of bottle 1, 3, and 4 even though
they all require push-and-twist: bottle 1 must push-and-twist
at least twice to open, while bottles 3 and 4 require only
one push-and-twist action. If the robot could learn and infer
the degree of rotation required to open the bottle, the robot
could generate a new action to achieve tasks. However, the
proposed method does not explore the parameterization of
each atomic action in the presented work.

VII. CONCLUSION

In this work, we present a novel method of naturally
capturing visually hidden states of a task and transferring
them to the robot through human demonstrations using a
tactile glove. The tactile glove provides a data collection
method to capture visually hidden causal changes in the
scene. Using this latent encoding of the scene, we learn a
model to plan the actions of the human demonstrator. The
human demonstrations are used to induce an AOG, and the
AOG is used to supervise successful executions of opening
a bottle.

The robot states of successful executions are mapped to
successful demonstrations from the human demonstrator us-
ing a low-dimensional embedding of the human tactile feed-
back. This embodiment mapping solves the correspondence
problem using a relatively small number of supervised robot
executions. The robot utilizes this mapping in conjunction
with the top-down and bottom-up terms to infer the next
action to execute.

The proposed method (Table III) shows a marked improve-
ment over two baselines (Table I and II), demonstrating the
top-down and bottom-up terms work together to increase the
success rate in comparison to using either method alone.



Future Work
This work paves the way for additional work regarding vi-

sually latent states and corresponding embodiment mappings.
We would like to investigate methods to make the system less
supervised by clustering the human demonstrations. From the
clusters, the robot may not possess an equivalent action in
its dictionary and may need to search its action space for an
action with equivalent pre- and post-conditions.

The framework presented here could be used to attempt
functionally equivalent tasks [4]. In this way, the robot could
demonstrate understanding the dynamics of the task that
needs to be replicated and which can be safely ignored.
Experimenting to find functional equivalence is closely re-
lated to counterfactual reasoning in the causal domain; such
explorations establish causal connections between actions
and their effects.
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