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Abstract

Transfer learning is fundamental for intelligence; agents ex-
pected to operate in novel and unfamiliar environments must
be able to transfer previously learned knowledge to new do-
mains or problems. However, knowledge transfer manifests
at different levels of representation. The underlying compu-
tational mechanisms in support of different types of transfer
learning remain unclear. In this paper, we approach the transfer
learning challenge by decomposing the underlying computa-
tional mechanisms involved in bottom-up associative learning
and top-down causal schema induction. We adopt a Bayesian
framework to model causal theory induction and use the in-
ferred causal theory to transfer abstract knowledge between
similar environments. Specifically, we train a simulated agent
to discover and transfer useful relational and abstract knowl-
edge by interactively exploring the problem space and extract-
ing relations from observed low-level attributes. A set of hier-
archical causal schema is constructed to determine task struc-
ture. Our agent combines causal theories and associative learn-
ing to select a sequence of actions most likely to accomplish
the task. To evaluate the proposed framework, we compare
performances of the simulated agent with human performance
in the OpenLock environment, a virtual “escape room” with a
complex hierarchy that requires agents to reason about causal
structures governing the system. While the simulated agent re-
quires more attempts than human participants, the qualitative
trends of transfer in the learning situations are similar between
humans and our trained agent. These findings suggest human
causal learning in complex, unfamiliar situations may rely on
the synergy between bottom-up associative learning and top-
down schema reasoning.

Introduction
The human capacity for inferring causal relations in un-
familiar environments is a hallmark of human intelligence
(Mackie, 1974) that is often taken for granted in daily life. An
illustrative example is that of the escape room—a prevalent
social activity where groups of people inside of a locked room
work together to complete sub-goals (puzzles) to achieve the
goal—escape from the room. In order to succeed, teams
must: (i) identify goal-relevant entities in the environment
among distractors, (ii) develop a causal model for individual
sub-goals, and (iii) interact with scene components to refine
entity- and goal-based hypotheses. In this paper, we propose
that inference in scenarios like the one above depends on two
critical learning components. First, attributes relevant to can-
didate causal hypotheses are learned by interacting with en-
tities in the scene, and second, causal hypotheses are refined
based on newly encoded attribute-based knowledge.

It is worth noting that the above approach is generally in-
consistent with early studies on causal learning in psycholog-
ical research (Holyoak & Cheng, 2011). Early studies pri-

marily focused on animal learning and conditioning experi-
mental paradigms, framing causal understanding as learned
stimulus-response relationships attained primarily through
observation (e.g., Shanks and Dickinson (1988)). Given as-
sociative weights on cue-effect links, the Rescorla-Wagner
model was often utilized to explain how humans (and non-
humans) construct expectations based on the co-occurrence
of perceptual stimuli (Rescorla & Wagner, 1972). However,
the knowledge that people have about causal mechanisms in
the distal world has been shown to extend beyond the co-
variation between observed (perceptual) variables. For in-
stance, adults interact with dynamic physical scenarios in
ways that maximize information relevant to their causal hy-
potheses (Bramley, Gerstenberg, Tenenbaum, & Gureckis,
2018), and even infants test their beliefs about the physical
characteristics of objects through exploration and experimen-
tation (Stahl & Feigenson, 2015).

Contrary to the associative account, researchers have
demonstrated that human learning and reasoning in novel
(causal) environments rely heavily on the discovery of ab-
stract causal structure (Waldmann & Holyoak, 1992) and
strength (Cheng, 1997) rather than purely associative (sta-
tistical) dependencies. More recently, the integration of
causal graphical models and Bayesian statistical inference
(i.e., Bayes nets) has provided a general representational
framework for how this structure and strength is learned
and transferred to novel situations (Griffiths & Tenenbaum,
2005, 2009; Tenenbaum, Griffiths, & Kemp, 2006; Bramley,
Lagnado, & Speekenbrink, 2015; Bramley, Dayan, Griffiths,
& Lagnado, 2017; Edmonds et al., 2018; Holyoak & Cheng,
2011). Under this framework, causal knowledge plays an
essential role in constructing a flexible model of the world
in which environmental states represent some status in the
world, and connections between states imply the strength of
a causal relationship.

We propose that creative discovery in novel domains re-
lies on both causal structure and associations. Knowledge
of causal structure enables agents to simulate how interven-
tions will influence the environmental state, and without asso-
ciations to guide exploration, the number of causal hypothe-
ses to consider becomes intractable. For problem domains
where the number of possible interventions is particularly
high, the need for associative “guidance” can drastically im-
prove decision-making. To solve this problem, we propose
a computational model that integrates two learning mecha-



nisms: (i) a bottom-up process that determines which object
attributes are causally relevant, and (ii) a top-down process
that learns which abstract causal structures accomplish a task.
The outcomes of actions are used to update the causal hy-
pothesis space, and simulated agents learn a dynamics model
capable of solving a challenging task.

We implement the proposed model in a virtual “escape
room” environment where agents (human and artificial) are
trapped in a room containing a single locked door and a set of
conspicuous levers. The door of this room will unlock after
the agent has interacted with the levers in a specific sequence.
An agent placed in such a room may begin to randomly push
or pull on the levers and revise their theory about the door’s
locking mechanism based on observed changes. Once an
agent discovers a single solution, they are placed back into
the same room and tasked with finding the next solution. The
agent “escapes” from a room after finding all of the solutions
which can be used to unlock the door.

After escaping from a room, agents are placed in a similar
room but with newly positioned levers. Although the levers
are in different positions, the new room is governed by the
same abstract rules as the last (unknown to the agent). Thus,
the agent’s task is to identify the role of each lever in a new
room. If the agent makes use of some knowledge from pre-
vious trials, we expect to observe fewer attempts in solving
the problem. Because these rules are abstract descriptions of
the latent state of the escape room, we refer to the underly-
ing theory as a causal schema (i.e., a conceptual organiza-
tion of events identified as cause and effect; Heider, 1958).
Once learned, this schema enables agents to transfer between
different arrangements of levers in the room. The present
work models the causal learning process from a hierarchical
Bayesian perspective and makes three major contributions:
1. Utilizes a bottom-up associative learning paradigm to de-

termine which attributes of the scene contribute to causal
relations.

2. Utilizes a top-down causal schema model of the general-
ized operation of the environment to quickly adapt to sim-
ilar but new scenarios.

3. Leverages causal hypotheses to learn a world model capa-
ble of transferring knowledge between seemingly dissim-
ilar but structurally and causally equivalent environments.

The remainder of the paper is structured as follows. First, the
OpenLock environment and experimental procedure are de-
scribed, followed by an analysis of human performance from
Edmonds et al. (2018). Next, components of the proposed
model are described and corresponding results are provided.
Finally, the paper concludes with a discussion of results and
directions for future work.

Experiment: OpenLock Task
Participants
A total of 160 undergraduate students (114 female; mean
age= 21.6) from the University of California, Los Angeles
(UCLA) Department of Psychology subject pool and were
compensated with course credit for their participation.
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Figure 1: (a) Initial configuration of the room containing
three active levers. All levers begin pulled toward the robot
arm located at the center of the display. The arm interacts
with levers by pushing/pulling them outward/inward. Only
push actions are needed to unlock the door in each room (un-
known to agents). White levers never move; this information
is not explicitly stated. Once the door is unlocked, the green
button can be clicked to command the arm to push the door
open. The black circle located opposite the door’s red hinge
represents the door lock indicator (present if locked, absent if
unlocked). (b) Pushing on a lever. (c) Opening the door by
clicking the green button.

Materials and Procedure
In this section, we outline the OpenLock task, initially pre-
sented in Edmonds et al., 2018. In the task, agents are re-
quired to “escape” from a virtual room by unlocking and
opening a door. The door unlocks after manipulating the
levers in a particular sequence (see Figure 1). Each room
consists of seven levers surrounding a robotic arm that can
push or pull on each lever. While a subset of the levers is al-
ways involved in the locking mechanism (i.e., active levers;
colored grey), other levers are not causally relevant (i.e., in-
active levers; colored white). Agents observe the color of the
levers and are expected to learn that grey levers–but not white
levers–are always part of solutions in each room. Importantly,
agents are tasked with finding all possible solutions for open-
ing the door within a room. Participants are explicitly told
that their goal is to open the door and are informed of how
many solutions they have remaining in this room.1

The mechanics underlying the environment obey one of
two causal schemas: Common Cause (CC) and Common Ef-
fect (CE) (see Figure 2). Requiring agents to find all solutions
within a specific room ensures that agents abstract CC or CE
schema structures. While a single solution corresponds to a
single causal chain, a schema relies on nodes that are shared
between multiple chains. Agents operate under a movement-
limit constraint, where only three movements can be used to
either (i) push or pull on levers (active or inactive), or (ii)
push open the door. This constraint was placed on the agent
to confine the search depth of possible solutions. After three
movements, the episode terminates and the environment re-

1The video instructions presented to participants can be viewed
at https://vimeo.com/265302423

https://vimeo.com/265302423
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Figure 2: Common Cause (CC) and Common Effect (CE)
structures used in the OpenLock task, in which Li indicates a
lever in the scene, and D indicates the effect of opening the
door. In (a) CC3 and (b) CE3 condition, both include three
causal cues but with different causal structures.

sets, regardless of the outcome. Agents also operate under
a limited number of episodes (30) in a particular room, re-
gardless of whether all solutions are found. We denote three
movements as an attempt and each room as a trial. After
completing a trial, agents move to a new trial (i.e., room)
with the same underlying causal schema but a different lever
arrangement. This setup ensures that agents do not overfit
their understanding of the environment to a single trial; i.e., if
agents are forming a useful abstraction, the knowledge they
acquired in previous trials should aid in their ability to find
all solutions in new trials. Note that in a 3-lever room, an op-
timal agent should produce both solutions within 3 attempts.
One attempt may be used to identify the role of the observed
levers in the abstract structure, and the remaining attempts are
used for each solution.

Human Results
The analyses reported herein expand on previous behavioral
findings by examining the number of attempts needed to find
each solution rather than accumulating all solutions (see Hu-
man Data, Edmonds et al., 2018). The purpose of this ex-
ploration was to tease apart the separate learning components
involved in the OpenLock task. Participants who failed to find
all solutions in the allotted maximum number of attempts in
any trial were removed from the analysis (24 participants re-
moved from each condition). Eighty human participants were
assigned to each condition (CC and CE).

We first examined whether the number of attempts needed
to find each solution varied across trials. The behavioral data
from each experimental condition is depicted in Figure 4.
For participants who trained under a Common Cause (CC)
schema, attempts needed to find the first solution decreased
significantly following both the first trial (t(55)= 6.80; p<
.001) and second trial (t(55)= 2.52; p= .02). First solution
attempts also showed a marginal decrease following the fifth
trial (t(55)= 1.99; p= .051). For the second solution, the
number of attempts needed decreased significantly following
the first trial only (t(55)= 4.40; p< .001). A similar trend
was observed for participants assigned to the Common Ef-
fect (CE) condition—attempts needed to find the first solution
decreased following the first trial (t(55)= 5.30; p< .001) and
third trial (t(55)= 2.19; p= .03), and attempts needed to find
the second solution decreased following the first trial only
(t(55)= 2.36; p= .02).

The human results demonstrate that regardless of which
causal schema participants trained with, significant learning
appeared to occur in the early trials for both the first and sec-
ond solution. However, the learning rate for the first solution
was much faster, and the learning rate for the second solution
was relatively less pronounced. In the next sections, we de-
scribe our computational approach and report whether it can
account for human performance.

Model Details
We begin by describing our agent’s process for combining
top-down (abstract) causal knowledge with bottom-up (asso-
ciative) attribute knowledge. The agent decides which action
to perform by (i) computing the posterior probability of each
candidate causal chain and (ii) making a selection using the
computed posterior and a model-based planner.

Causal Theory Induction: To explain trends in human per-
formance, we follow a Bayesian account of how hierarchical
causal theories can be induced from data (Griffiths & Tenen-
baum, 2005, 2009; Tenenbaum et al., 2006). The key insight
in this framework is that hierarchy enables abstraction, and
theories provide general background knowledge about a task
or environment at the highest level. Theories consist of prin-
ciples; for example, an analysis of evolutionary traits between
species can be represented with a taxonomic tree and muta-
tion processes (example from Tenenbaum et al. (2006)). Prin-
ciples lead to structure; for example, a tree describing how
primates evolved and split into species over time. Finally,
structure leads to data; such as shared genes among primates.

The goal of this work is to model a human decision-
making process where agents are required to learn transfer-
able knowledge between different yet similar environments.
We approach the problem from the perspective of active
causal theory learning, where we expect an agent endowed
with no information to learn the underlying abstract mechan-
ics and commonalities between environments through inter-
action. This approach naturally places the focus of the learn-
ing task on how the agent decides the best action to take next
and how to effectively integrate the results into the agent’s
model of the world.

In this work, we adhere to two general principles of learn-
ing: (i) causal relations induce state changes in the envi-
ronment, and non-causal relations do not (referred to as our
bottom-up β theory), and (ii) causal structures that have pre-
viously been useful may be useful in the future (referred to
as our top-down γ theory). Specifically, the environment
provides a set of attributes, such as position and color, and
our agent learns which attributes are associated with levers
that induce state changes in the environment. Our agent
also learns a distribution over abstract causal structures (i.e.,
schemas) that provide generalized notions of task structure.

We define a causal chain hypothesis space, ΩC, over pos-
sible causal chains, c∈ΩC. Figure 3b shows the structure of
the causal chain. Each chain is defined by a tuple of sub-
chains c=(c0, . . . ,ck), where each subchain is defined as a
tuple ci =(ai,si,cra

i ,crs
i ). Each ai represents an action node

that the agent can intervene on (execute), and the space of ac-
tions, ΩA, consists of pushing and pulling on every lever and
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Figure 3: (a) An illustration of hierarchical structure of the
model. A bottom-up associative learning theory, β, and a top-
down causal theory, γ, serve as priors for the rest of the model.
The model makes decisions at the causal chain resolution. (b)
Atomic causal chain. The chain is composed by a set of sub-
chains, ci, where each ci is defined by: (i) ai, an action node
that can be intervened upon by the agent, (ii) si, a state node
capturing the time-invariant attributes and time-varying flu-
ents of the object, (iii) cra

i , the causal relation between ai and
si, and (iv) crs

i , the causal relation between si and si−1.

pushing on the door. Each si represents a state node. The state
node is defined as a tuple, si =(φi, fi), where φi is a vector
of time-invariant attributes and fi is a vector of time-varying
fluents. The state node is influenced by taking action ai ac-
cording to the causal relation cra

i and may be affected by a
previous state node through the causal relation crs

i . For in-
stance, in Figure 1a and Figure 3b, the action push for the
leftmost lever may transition the lever from the fluent pulled
to pushed through cra

0, which in turn transitions the upper-
most lever from locked to unlocked according to crs

1.
The space of attributes is denoted as Ωφ, consisting of po-

sition and color. The space of fluents, ΩF , consists of bi-
nary values for lever status (pushed or pulled) and lever lock
status (locked or unlocked). The space of states is defined
as ΩS =Ωφ×ΩF . The space of causal relations is defined
as ΩCR =ΩF×ΩF , capturing the possibly binary transitions
between previous fluent values and the next fluent values.

We assume agents can directly intervene on (i.e., control)
actions, but cannot directly intervene on fluents. This distinc-
tion adds significantly more complexity to the causal chain
hypothesis space but means that we do not assume the effects
of actions, nor do we assume an agent can directly intervene
on the value of a particular fluent. We assume that an agent
can execute any action within the action space (through an
intervention on the action node in the causal chain), but how
that action affects the state of the world must be learned (i.e.,
the effects of the actions are learned).

Decomposing states into time-invariant attributes and
time-varying fluents aids in the computational complexity of
learning and inference; our agent assumes attributes cannot
be changed by actions or other states. In addition, because
the attributes are time-invariant, attributes offer a grounding
upon which the agent can learn knowledge, regardless of the
executed action sequence or lever configuration. In contrast,
the fluents are time-varying and include the latent state of the
lever’s internal locking mechanism; i.e., locked or unlocked.

The agent learns how to influence these latent states through
observational cues about which attributes are associated with
a particular fluent. Attributes are defined by low-level fea-
tures of an object, e.g., position, color, shape, orientation,
etc.. These low-level attributes provide general background
knowledge about how specific objects change under certain
actions (for instance, which levers can be pushed or pulled).

A background theory encodes general knowledge that can
be used to induce or evaluate a structural representation. We
use two background theories—one for bottom-up features,
denoted β, to learn beliefs about which attributes of objects
indicate the object can be interacted with to produce a causal
effect. This low-level knowledge about object attributes and
their propensity to be involved in causal relationships pro-
vides information to transfer between similar but different en-
vironments governed by common underlying dynamics. The
second background theory provides a top-down abstraction,
denoted γ, that assumes tasks have similar causal structure
across slightly different environments; i.e., changes in the ob-
servable environment do not alter the underlying causal struc-
ture of a task.

Attribute Learning: Attributes provide time-invariant
properties of an object. Categories of objects often share
common attributes; e.g., all cups share a common shape, all
stop signs are red, etc.. However, objects in a category may
vary in their physical form but share common functionality;
for instance, light switches come in a number of shapes and
sizes, but all examples share a common mechanism to transit
between states.

We learn which attributes are relevant to our causal hy-
potheses via a Bayesian learning process, based on our
assumption that causal relationships induce state changes.
Therefore, an object changing states under an action indi-
cates that the object’s attributes may be related to a causal
relationship. These attributes provide generalization clues for
the agent, such as insights into which low-level attributes in-
dicate that the corresponding object is part of a solution. This
knowledge is invariant across trials and causal schemas.

The agent’s belief in an attribute being causal is mod-
elled with a multinomial distribution Mult(θ) parameterized
by θ. The posterior distribution of θ given observed data X
and the bottom-up theory β follows a Dirichlet distribution:
p(θ|X;β)=Dir(α′), where α′ is given by a maximum a pos-
teriori (MAP).

Attributes are learned in two different time scales: a global
timescale to learn attributes across all trials (between tri-
als) and a local timescale to learn attributes specific to this
trial (within trials). This separation allows the agent to
adapt quickly to trial-specific knowledge while maintaining
a global understanding across all trials. In each timescale, we
perform this attribute learning in the following steps: (i) draw
a sample (produce an observation by selecting an intervention
and observing the result), (ii) accept the sample if the envi-
ronment changed state in any way (i.e., there was an effect
from the intervention), and (iii) increase α of each attribute’s
Dirichlet distribution according to observed outcome.

A Dirichlet distribution, Dir(αG), is used to model the pos-
terior of the global attribute distribution. After finishing a



trial, the agent’s global Dirichlet parameters, αG, are updated
to incorporate the observed data within a trial.

For each trial, we initialize the parameters of the local at-
tribute Dirichlet distribution, Dir(αL), with a scaled sample
from the global Dirichlet, αL = kθ, where θ∼Dir(αG). This
scaling factor k reduces the variance and enables fast adapta-
tion of the agent’s local attribute beliefs. In our experiments,
we set k to initialize the local Dirichlet to have αL ∈ [1,10].

We introduce an additional variable, ρ to represent a casual
event according to our background theory β; i.e., that causal
events induce state changes in the environment. We use a
local prior over attributes as our bottom-up associative learn-
ing theory. We compute the likelihood that the attributes of
a particular chain c are causally relevant given a background
theory β as:

p(ρ|c;β)= ∏
ci∈c

p(ρi|ci;β), (1)

where p(ρi|ci;β) is computed as

p(ρi|ci;β)∝ ∏
φi j∈si
si∈ci

p(ρi|φi j;β) (2)

where φi j is the j-th attribute from the i-th subchain. The
term p(ρi|φi j;β) represents the probability that attribute φi j
adheres to the background theory β. Here, β represents the
probability that attribute φi j is associated with objects that in-
duce state changes. Note that p(ρi|φi j;β) is parameterized by
a sample from the local attribute Dirichlet distribution. After
finishing an attempt, we update the parameters αL of the lo-
cal distribution to incorporate the outcome of the attempt and
resample θ.

Recall our associative theory: causal relationships induce
state changes in the environment; practically, p(ρi|φi j;β) rep-
resents the probability that attribute φi j is associated with ob-
jects that produce state changes, under the assumption these
attributes are independently associated with causal events. In
our domain, an agent using this theory should learn that grey
levers are involved in causal events and white levers are not.
Additionally, the agent should initially believe that position
is an important attribute for detecting causal relationships.
However, as the agent observes multiple configurations of
levers with different positions of grey levers, every position
will be involved in causal events, and therefore this belief
should approach the uniform distribution.

This bottom-up inference enables agents to leverage low-
level associative information about causal relationships. We
then transfer this belief between trials, thereby enabling our
agent to leverage the knowledge acquired in one trial to trans-
fer to the next trial. The agent updates its belief regarding
which attributes it believes are causal after each attempt.
Abstract Schema Learning: Learning attributes that cor-
respond to causal cues is critical for an agent expected to learn
how an environment operates. However, many environments
share common high-level abstract causal structures. For in-
stance, switches come in all different shapes and sizes tailored
to specific tasks—from a light switch to a circuit breaker to

a railroad switch. Each of these domain-specific mechanisms
share a common abstract functionality—changing the state of
some object from one discrete state to another.

We propose a model to learn abstract structural models that
can be used to instantiate domain-specific models to achieve a
task in an environment. This abstract knowledge is assumed
to be useful across domains, and agents may acquire a col-
lection of useful abstract models of different functionality.
Our model considers learning abstract knowledge as a form
of model selection, where the agent hypothesizes a space of
potential abstract structures and updates the beliefs in those
abstract structures based on its experience in the environment.

More specifically, we consider an abstract causal schema,
gA, from a hypothesis space of abstract schemas, ΩGA , to be
a structural description of some causal relationships (see Fig-
ure 2). The space ΩGA is enumerated in this work; i.e., all pos-
sible structural combinations of N = 2 trajectories (i.e., causal
chains) with length K = 3 are considered (since there are two
solutions and three actions per attempt). We introduce a prior
over abstract schemas, p(gA;γ), that is a multinomial distribu-
tion parameterized using a sample from the abstract schema
Dirichlet distribution, Dir(αA). After completing a trial, the
abstract schema that encodes the solutions found in this trial
receives a parameter update in the Dirichlet distribution—i.e.,
an increase to the solution abstract schema’s αA.

These abstract structures are not bound to any particu-
lar instantiation of attributes, states, or actions. Instead,
they encode common structural properties under varying
instantiations—knowledge that may be useful when an ob-
servational setting is changed. In our task, abstract schemas
encode the abstract structures, some of which are useful for
solving OpenLock (i.e., CC or CE), and we should expect
agents to have a biased prior towards these structures.

Next, we consider an instantiated schema, gI , to be a com-
position of causal chains, c∈ΩC. Instantiated schemas share
the same structure as abstract schemas, but contain specific
assignments for each ai, si, cra

i , and crs
i of each subchain in

the schema. We compute the belief in an instantiated schema
gI according to the hierarchical structure in Figure 3a:

p(gI |do(q);γ)= ∑
gA∈ΩGA

p(gI |gA,do(q))p(gA;γ), (3)

where do(q) represents an intervention where the agent per-
forms q—the solutions found thus far, a set of action se-
quences q= {A0,A1, . . . ,An}, where Ai is an action sequence.
The do() operator is the intervention operation presented by
Pearl (2009), which allows the agent to bias its top-down in-
ference towards instantiated schemas that contain solutions
already found. Next, we compute the top-down belief in a
causal chain by summing over instantiated schemas that con-
tain the chain:

p(c|do(q);γ)= ∑
gI∈ΩGI

p(c|gI ,do(q))p(gI |do(q);γ). (4)

These terms enable top-down inference on which chain is
most likely to adhere to instantiated schemas that reflect ab-
stract causal structures that have been useful in the past.



Learning which abstract schemas were successful in previ-
ous trials can be leveraged when the agent faces a new room
configuration with the same underlying abstract mechanism
governing the lock.

Intervention Selection: We formulate our intervention se-
lection as a combination of the top-down and bottom-up
causal chain beliefs, and we consider our learning mecha-
nisms, γ and β, to be independent. We compute the poste-
rior of the chain based on our top-down belief and bottom-up
likelihood, assuming a uniform prior p(ρ):

p(c|ρ,do(q);γ,β)∝ p(c|do(q);γ)p(ρ|c;β). (5)

Our agent maintains an explicit notion of the goal of the
task—to open the door. Human participants were also told
the precise goal of the task. Thus, we frame our intervention
selection process as a form of model-based planning. Our
agent seeks to infer the causal chain most likely to achieve
the goal—opening the door—given the agent’s current model
of the environment. The agent’s model of the environment
comes from two forms of learning: bottom-up associative at-
tribute learning and top-down abstract schema learning.

We define a target goal of our planner as a particular state
of the environment, denoted s∗. Given a target goal our agent
models its current state as a tuple of (n,q), where n represents
the number of solutions remaining, and q the set of solutions
already executed. The agent seeks to execute a causal chain
c in the hopes of transitioning n to n−1. The agent replans
after every attempt until it finds all solutions the room; i.e.,
when n= 0. Thus, our final planning objective at time t is to
pick the causal chain with the maximal posterior subject to
the constraints that the chain contains the target goal state s∗

(i.e., the door being pushed) and is not in the agent’s set of
solutions executed q:

c∗t = argmax
c∈ΩC

p(c|ρ,do(q);γ,β) s.t. s∗ ∈ c∧c 6∈ q, (6)

where p(c|ρ,do(q);γ,β) is defined in Equation 5. This state
definition matches information provided to human partici-
pants and places the focus of our planner on achieving task-
level goals.

Among the chains that satisfy the constraints, we rely on
our chain posterior to capture which chains are causally plau-
sible. The posterior combines the top-down structural knowl-
edge with the bottom-up attribute knowledge. This combina-
tion is powerful for two reasons: (i) bottom-up knowledge bi-
ases beliefs towards structures that contain attributes that have
been present in causal events in the past, and (ii) top-down
knowledge allows the agent to bias beliefs towards structures
that have been useful in the past.

Model Results
We train our agent in the same fashion as humans; specif-
ically, we allow the agent to complete 80 trials in CC and
CE escape rooms (same number as human participants). The
agent is also limited to 3 actions in an attempt and 30 attempts
within a trial. Any agent that did not complete all trials was

removed from the study (same as human participant data—no
agents were removed from the CC condition; 7 agents were
removed from the CE condition).

Figure 4 compares human and model performance. The
model shows a similar trend as humans but with slightly
worse performance in each trial2. For the agent assigned to
the CC condition, the number of attempts needed to find the
first solution decreased significantly following the first trial
(t(79)= 8.09; p< .001) and second trial (t(79)= 4.04; p<
.001). The CE agent required less attempts to find the first
solution following the first trial only (t(72)= 6.23; p< .001).
Decreases in first and second solution attempts were not sig-
nificant between the remaining trials.

These results demonstrate that our model is roughly ca-
pable of capturing learning rates of human participants but
does not capture all significant changes in the number of at-
tempts needed: e.g., in both the CC and CE conditions, the
number of attempts needed by participants to find the second
solution consistently decreased following the first trial. How-
ever, our model overall effectively captures general trends
in human performance: the number of attempts needed to
find all solutions matches well to humans and decreases near-
monotonically, albeit at a lesser rate.

2Example solution executions for human participants and the
model can be viewed at https://vimeo.com/334518941

(a) (b)

(c) (d)

(e) (f)
Figure 4: Comparison of human and model results for the
common-cause CC3 condition and the common-effect CE3
condition. (a) and (b) compare the total number of attempts to
find all solutions; (c) and (d) compare the number of attempts
to find the first solution; (e) and (f) compare the number of
attempts to find the second solution.

https://vimeo.com/334518941


Conclusion
In this work, we showcase a hierarchical model based on as-
sociative learning and schema reasoning. Our model inte-
grates two learning mechanisms: (i) a bottom-up theory that
learns which attributes have causal associations in the envi-
ronment, and (ii) a top-down theory that learns useful abstract
structures in the environment. Our agent chooses an interven-
tion based on the posterior of causal chains and updates its
model using the observed outcome of the intervention. Model
results show that our hybrid agent is able to capture general
trends observed in human participants and captures some of
the statistical significance observed in human performance.
These results suggest that human causal learning may consist
of a mechanism that combines bottom-up associative learning
with top-down reasoning about causal structure.

The underlying computational framework presented here
is broadly applicable outside of the OpenLock environment;
it can be applied to any reinforcement learning environment
where: (i) underlying dynamics are constrained by some
causal structure; (ii) interactive elements have observable fea-
tures which signal causal relevance; and (iii) physical loca-
tions of key elements change over time. In the future, we
hope to expand our model to account for more extreme ob-
servational changes. For example, what if levers could sud-
denly be rotated instead of pushed/pulled? What if new col-
ors were introduced which provided further cues about causal
relevance? And what if the environment began operating in
a probabilistic fashion where levers may fail to actuate prop-
erly? Future behavioral and computational work should ex-
amine how these processes integrate in more complex scenar-
ios that provide a closer approximation to the real world.

Discussion
What other theories may be useful for learning causal re-
lationships? The background theories presented here—
namely that causal relationships induce state changes and ab-
stract causal knowledge can be reused—provide reasonable
background theories. However, other background theories
may also be appealing. For instance, Pearl (2009) defines a
stricter definition of causal relations based on whether or not
a causal relation is identifiable in a directed acyclic graph.
How can hypothesis space enumeration be avoided?
The spaces of ΩgA and ΩgI are enumerated in this work. Hy-
pothesis space enumeration can quickly become intractable
as problems increase in size. While this work used a fixed,
fully enumerated hypothesis space, future work will include
examining how sampling-based approaches to iterative gen-
erate causal hypotheses (e.g., see Bramley et al. (2017)).
What are the other possibilities of bottom-up associative
criteria? Our method treats low-level attributes as the cri-
teria for our bottom-up associative learning. However, other
possibilities are equally valid. For instance, a modeler could
pair attributes with specific actions and learn distributions
of causal effects over this pairing. This decision ultimately
comes down to the resolution of the problem being consid-
ered and what is appropriate to correctly model the problem.

How is this work connected to reinforcement learning
(RL)? The model-based planner is closely related to
model-based RL. Our problem setting could be cast in terms
of a 0-1 reward function—the agent receives a reward of 1
if the door is opened, and 0 otherwise. However, model-
based RL typically assumes a world model is provided, but
our agent iteratively updates its conception of world dynam-
ics through associative learning and schema reasoning.
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