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A Overview
This supplementary document provides additional formu-
lation details, technical details, extra analysis experiments,
more quantitative and qualitative test results to the main pa-
per.1

Section B provides additional implementation details on
our causal theory-based learning scheme; additional abla-
tion results are presented in Section C. Section D details the
reinforcement learning (RL) model including architectures
and hyper-parameters, and Section E showcases additional
details on our RL experimental procedure. These experi-
ments are organized by different Reinforcement Learning
algorithms, casual schemas, and reward strategies.

B Causal Theory Induction
In this section, we outline additional details on our model.
In particular, we provide additional details on the agent’s
bottom-up instance-level learning and top-down abstract-
level structure learning.

B.1 Instance-level Inductive Learning
Here, we outline additional formulation and implementation
details regarding our instance-level learning scheme. This
scheme combines a set of attributes with a single action
but can be easily extended to include multiple actions or
additional dimensions to consider for instance-level learning.
This knowledge encodes a naive Bayesian view of causal
events by independently examining how frequently attributes
and actions were involved in causal events. First, we revisit
our formulation:

p(ρ|c;β)=
∏
ci∈c

p(ρi|ci;β), (1)

where p(ρi|ci;β) is computed as
p(ρi|ci;β)= p(ρi|φi0, . . . , φik, ai;β) (2)

=
p(φi0, . . . , φik, ai|ρi;β)p(ρi;β)

p(φi0, . . . , φik, ai;β)
(3)

=

p(ρi;β)p(ai|ρi;β)
∏
φij∈si
si∈ci

p(φij |ρi;β)

p(ai;β)
∏
φij∈si
si∈ci

p(φij ;β)
(4)

=

p(ρi;β)
p(ρi|ai;β)p(ai;β)

p(ρi;β)

∏
φij∈si
si∈ci

p(ρi|φij ;β)p(φij ;β)
p(ρi;β)

p(ai;β)
∏
φij∈si
si∈ci

p(φij ;β)
(5)

=

p(ρi|ai;β)
∏
φij∈si
si∈ci

p(ρi|φij ;β)

p(ρi;β)k
(6)

∝ p(ρi|ai;β)
∏

φij∈si
si∈ci

p(ρi|φij ;β), (7)

where k is the number of attributes of the state node si in
ci. We assume p(ρi;β) is uniform. Note that this derivative
is effectively a Naive Bayes approximation of the true joint
distribution, p(ρi|φi0, . . . , φik, ai;β).

1A video demonstration of the environment and model execu-
tion can be found in the submitted supplementary materials or at
http://138.68.224.173/aaai20/video_demo.mp4

B.2 Abstract-level Structure Learning
In this section, we provide additional details about our ab-
stract schema learning scheme. We will begin with the belief
in abstract schemas, defined as:

p(gA; γ)=
∑

gM∈ΩgM

p(gA|gM )p(gM ; γ), (8)

where p(gM ; γ) is the prior over atomic schemas, whose
parameters are provided by the atomic schema Dirichlet dis-
tribution. The p(gA|gM ) is computed as a exponential distri-
bution:

p(gA|gM )=
1

Z
exp(−D(gA, gM )), (9)

where D(gA, gM ) is the graph edit distance between the
abstract schema gA and the atomic schema gM , and Z is the
normalizing constant, Z =

∑
gA∈ΩgA

exp(−D(gA, gM )).
Next, we compute the belief in an instantiated schema as:

p(gI |do(q); γ)=
∑

gA∈ΩgA

p(gI |gA, do(q))p(gA; γ), (10)

where p(gI |gA, do(q)) is computed as a uniform distribution
among all gI that haveD(gI , gA)= 0 (ignoring vertex labels)
and contain the solutions found thus far q, and 0 elsewhere.
Next, the belief in a chain is computed as:

p(c|do(q); γ)=
∑

gI∈ΩgI

p(c|gI , do(q))p(gI |do(q); γ). (11)

Similarly, p(c|gI , do(q)) is uniform across all c∈ gI and 0
elsewhere. Finally, we compute the belief in each possible
subchain as:

p(ci|do(r, q); γ)=
∑
c∈ΩC

p(ci|c, do(τ, q))p(c|do(q); γ), (12)

where p(ci|c, do(τ, q)) is uniform across all ci ∈ c and 0 else-
where.

C Ablation Results
In this section, we present additional results from our pro-
posed method. Specifically, we show how well the model
performs under two ablations: (i) top-down structure learning
and (ii) bottom-up instance learning. This examination seeks
to identify to what degree and how well much each model
component contributes to the model’s performance. In our
formulation, these ablations amount to setting a probability
of 1 for the ablated component in the subchain posterior;
i.e., the subchain posterior reduces to the remaining active
model component (bottom-up during a top-down ablation
and top-down during a bottom-up ablation).

Figure 1 shows the results of the ablated model. In Fig-
ure 1a and Figure 1b, the model is ablated to disable the top-
down abstract structure learning. We see the agent performing
with similar trends as the full model results, but with worse
performance. This is due to the agent learning the bottom-up
associative theory regarding which instances can be manipu-
lated to produce a causal effect, but the agent performs worse



(a) (b) (c) (d)

Figure 1: Results using the proposed theory-based causal transfer under ablations. (a) Proposed model baseline results under a
top-down ablation (i.e., only instance-level learning occurred). (b) Proposed model transfer results under a top-down ablation. (c)
Proposed model baseline results under a bottom-up ablation (i.e., only abstract-level structure learning occurred). (b) Proposed
model transfer results under a bottom-up ablation.
due to the lack of task structure. During transfer, we see
little difference (with no significance; t(79)= 0.8; p=0.42
and t(79)= 0.8; p=0.43 for Common Cause 4 (CC4) and
Common Effect 4 (CE4) respectively) between the training
groups. This is expected; an agent that learns no task struc-
ture should exhibit no difference between tasks. This agent
is essentially aimlessly searching the structure space, biased
towards any structure with subchains with a high likelihood
of producing a causal event.

Figure 1c and Figure 1d show the model ablated with the
bottom-up instance learning disabled. In the baseline results,
we see a slight increase in performance over time for CC4;
this is because the agent is becoming more confident in which
structure governs the environment. However, this version of
the model has no regard for whether or not an agent can
interact with a particular instance (i.e., it lacks the bottom-up
associative theory regarding causal events). Because of this
limitation, the agent must try many possible instantiations of
the correct abstract structure before finding a solution. During
transfer, we see the agent benefiting most from training in
Common Cause 3 (CC3), which is counter-intuitive for the
CE4 transfer condition.

However, we believe this is best explained from a decision
tree perspective, as elaborated in the main text. Throughout
all model and human experiments, we observed that Common
Effect (CE) was more difficult than Common Cause (CC).
From a decision tree perspective, agents that learn a CC struc-
ture will first identify the first lever in the structure; this is the
only lever they can interact with initially. After identifying
this lever, they can then push on either remaining lever to
unlock the door. While this strategy will not work for CE
directly, it may still benefit an agent only equipped with struc-
ture learning. For instance, when applying this strategy to CE,
the agent may find the first solution faster. After finding the
first solution, the space of second solutions is constrained to
contain the first solution. From here, despite having learned
the “wrong” structure for this task, the agent may find both re-
maining solutions faster. This is an unexpected phenomenon
and will be examined as future work.

D Details of Reinforcement Learning Model
In the section, we will detail the OpenLock experiment for
RL agents, hyper-parameters, and training procedures used
for our experiments. These hyper-parameters are selected via

a grid search.

D.1 Overview
In RL experiments, we want to answer:

1. Can predominate, state-of-the-art model-free RL algo-
rithms solve the OpenLock task?

2. What transferable representations, if any, do these RL
agents establish?

Notice our task definition requires agents to find all solu-
tions in a trial. This requirement means that an agent that
memorizes and biases to specific one solution will be scored
badly under our evaluation method. Agents must form ab-
stract transferable notions of the task or must memorize all
possible settings of the task.

To answer the first question, we show the performances
of typical RL algorithms. We try to improve their perfor-
mances by providing several reward strategies. The details
of algorithms, tasks, and rewards we used can be found in
Section D.3.

To answer the second question, if the agents are able to
establish such concepts, they can master the task with similar
casual schema both better and faster than training on that
task from scratch; i.e., we expect to see a positive transfer.
In this experiment, all the agents are first trained on 3-lever
tasks, then we transfer these agents to target 4-lever tasks
using fine-tuning. By comparing the results in our transfer
experiments with directly training on target tasks (i.e., base-
line experiments), we can verify whether the agents are able
to build such abstract casual concepts.

D.2 State and Action Spaces in OpenLock
In this section, we outline some specifications to OpenLock
environment. Readers are encouraged to examine (Edmonds
et al. 2018) for additional details.

• State Space: The state space consists of 16 binary dimen-
sions: 7 for the state of each lever (pushed or pulled), 7
dimensions for the color of each lock (grey or white), 1
dimension for the state of the lock (locked or unlocked),
and 1 dimension for the state of the door (closed or open).

• Action Space: The action space is a discrete space with
15 dimensions: each of the 7 levers has 2 actions (push and
pull), and the door has one action (push).



D.3 Algorithms, Casual Schemas and Rewards
We select a set of predominate, state-of-the-art RL algo-
rithms as baselines, including Deep Q-Network (DQN) (Mnih
et al. 2015), DQN with prioritized experience replay
(DQN-PE) (Schaul et al. 2016), Advantage Actor-Critic
(A2C) (Mnih et al. 2016), Trust Region Policy Optimization
(TRPO) (Schulman et al. 2015), Proximal Policy Optimiza-
tion (PPO) (Schulman et al. 2017) and Model-Agnostic Meta-
Learning (Finn, Abbeel, and Levine 2017). Table 1 lists all
the baselines we considered. These algorithms have been ap-
plied to solve a variety of tasks including Atari Games (Mnih
et al. 2015), classic control, and even complex visual-motor
skills (Levine et al. 2018), and they have shown remarkable
performance on these tasks when large amounts of simulated
or real-world exploration data are available.

Additionally, we also include a strong baseline of Model-
agnostic Meta Learning (MAML) (Finn, Abbeel, and Levine
2017). Note that the MAML does not employ a standard
transfer learning setting as it requires to access the target
task during the meta-learning phase, which can be more
advantageous than other transfer methods. Our main goal is
to verify whether the state-of-the-art meta-learning algorithm
(i.e., MAML) can solve the OpenLock task by forming the
correct causal abstraction of the task.

However, these algorithms cannot fully succeed in Open-
Lock even after exploring during a large number of episodes.
In the experiments, we use four casual schemas: CC3,
Common Effect 3 (CE3), CC4, CE4. We have two exper-
imental settings: (i) baseline, where agents are trained in a
4-lever condition (i.e. CC4 or CE4) and (ii) transfer, where
agents are trained in a 3-lever condition (i.e. CC3 or CE3)
and then transfer to a 4-lever condition (i.e. CC4 or CE4).

Now we will discuss the reward strategies we used in base-
line experiments. Rewards in the OpenLock environment are
very sparse; agents must search in a large space of possible
attempts (i.e. action sequences) of which there are 2 or 3
action sequences that achieve the task. Sparse rewards have
traditionally been a challenge for RL (Sutton and Barto 1998).
To overcome this, we enhance the reward by shaping it to pro-
vide better feedback for the agent; we introduce task-relevant
penalties and bonuses. We utilize 6 reward strategies:

Basic (B) The agent will receive a reward for unlocking
the door and will receive the largest reward for opening the
door. No other rewards are granted for all other outcomes.

Unique Solution (U) Inherits from Reward B, but the
agent only receives a reward when unlocking/opening the
door with a new solution. There are a finite (2 for 3-lever trials
and 3 for 4-lever trials) number of solutions. This reward is
designed to encourage the agent to find all solutions within a
trial, instead of only finding/pursuing the first solution found.

Reward B and Negative Immovable (B+N) Inherits from
Reward B, but introduces an extra penalty for manipulating
an immovable lever (Reward N). This is judged by whether a
state change occurs after executing an action; this penalty is
designed to encourage the agent to only interact with movable
levers.

Reward U and Negative Immovable (U+N) This reward
is a combination of Reward U and the Negative Immovable
penalty (Reward N) introduced in Reward B+N.

Reward N and Solution Multiplier (N+M) This reward
inherits from Reward B, but in this reward setting, we encour-
age the agent to find out more solutions in a slightly different
way from Reward U. Instead of only providing reward when
finishing the task with a new solution, the agent will receive
a reward every time it unlocks/opens the door, but when the
agent finds a unique solution, the reward it receives is multi-
plied by a fixed factor (> 1). This effectively encourages our
agent to find new solutions in a more reward-dense setting.
In addition, we also use the Negative Immovable penalty
(Reward N) for learning efficiency.

Reward N+M and Partial Sequence (N+M+P) Inherits
from Rewards B, N, and M, but adds a Partial Sequence
bonus. When the executed action sequence is exactly a pre-
fix of a solution to the current trial (no matter whether this
solution has been found out or not), the agent will receive
a bonus. This is a form of reward shaping to overcome the
sparse reward problem.

D.4 Hyper-parameters and Training Details
Table 2 presents the hyperparameters and training details for
our experiments. We select these parameters through several
preliminary experiments.

E Additional Results on
Reinforcement Learning Experiments

In the section, we will first introduce the RL experiments are
organized, then show the results for the baseline, training and
transfer experiments, and finally provide some intuitions and
analysis.

E.1 Experimental Procedure
Here we describe the complete experimental procedures for
RL agents. Each agent is trained for 200 iterations. In each
iteration, there are 6 trials for 3-lever tasks (CC3 and CE3;
referred to as the training phase) and 5 for 4-lever tasks (CC4
and CC4; referred to as the testing phase). Agents are allowed
to take at most 700 attempts to find all of the solutions within
a trial. A typical trial proceeds as follows:

1. A new trial starts.

2. Agent is allowed for taking a finite number of attempts
to find all solutions. An attempt will start from the initial
state of the environment, and end with opening the door or
reaching the maximum action limit.

3. A trial ends either when all the solutions have been found
or the agent reaches the maximum attempt limit.

4. After finding all solutions or running out of attempts, the
agent is placed in the next trial with different lever config-
urations but the same casual schema during the training
phase.

5. After completing all trials in the training phase, the agent
is placed into a single 4-lever trial for the testing phase.



For baseline experiments
(To answer Q1 in Section D.1)

For transfer experiments
(To answer Q2 in Section D.1)

DQN on 3-lever task from scratch Fine-tune DQN on 4-lever task
DQN-PE on 3-lever task from scratch Fine-tune DQN-PE on 4-lever task

A2C on 3-lever task from scratch Fine-tune A2C on 4-lever task
TRPO on 3-lever task from scratch Fine-tune TRPO on 4-lever task
PPO on 3-lever task from scratch Fine-tune PPO on 4-lever task

MAML (Meta learning with 3 and 4-lever tasks) MAML (N shot adaption on 4-lever task)

Table 1: Baselines used in our experiments.

Table 2: Hyperparameters and training details.

Parameter Value

Shared
Optimizer Adam
Learning rate 3e−4

Discount (γ) 0.99
Architecture of policy and value networks (128, 128)
Nonlinearity Tanh
Batch size 2048
L2 regularization 0.001

DQN/DQN-PE
Size of replay buffer 10000
Epsilon for exploration 0.9
Epsilon decay interval 50
Epsilon decay method exponential
Epsilon decay ending 0.05

TRPO
Maximum KL divergence 0.01
Damping 0.01

MAML
Meta optimizer TRPO

Others
Reward multipliers 1, 10, 20 for 1st, 2nd and 3rd solution
Repeated times 10
Total number of experiments 1800

We have 6 configurations in total for 3-lever tasks and 5 for
4-lever tasks. The configuration of the lever is selected in
a loop; the initial order of the configurations is randomized
per agent, but each agent see the same room ordering for the
entire experiment.

We evaluate the final performances after all iterations are
finished. The details of the evaluation are discussed in Sec-
tion E.2.

E.2 Evaluation Details
We expect an agent learning the correct abstractions and
generalizations to quickly adapt to similar but slightly differ-
ent circumstances. More specifically, an agent learning the
correct abstractions should perform better (i.e. have lower

attempts) as the agent encounters more trials with the same
causal schema. We propose several criteria to evaluate agents.
In our plots (Figure 2-8), we list 3 different curves:

• Attempt Amount This curve shows the number of at-
tempts used in each trial. Since a trial terminates when
all solutions have been found, an agent with better perfor-
mance will have fewer attempts per trial. Moreover, the
decreasing speed of this curve can also show how quickly
the agent mastered finding all solutions.

• Percentage of Found Solution This curve shows how
many solutions the agent found within a trial, e.g., if the
agent found all the 3 solutions (for a 4-lever task), this
value will be 1 for this trial. This plot also shows how well



the agent mastered find all solutions.

• Averaged Trial Reward This curve shows the averaged
reward in a trial (reward sum divided by the number of
attempts). Since the reward strategies are varied in our
experiments, this value cannot be a direct criterion to com-
pare the performance of various experimental settings.

In Table 5-10, we list the Averaged Attempt Amount for all
the experiments. This value is averaged by the last 30 trails to
show the final performance over all the lever configurations.
As mentioned above, the fewer the attempts, the better the
performance.

E.3 Baseline Experiments
In baseline experiments, we want to evaluate the agents’ per-
formance on a single causal schema. The agent needs to do
several trials successively. Among these trials, the causal
schema is fixed, while the lever configurations and observa-
tional solutions are varied (structurally, the solutions remain
the same). The goal in each trial is to find all the solutions
using as few attempts as possible. We evaluate all the 5 al-
gorithms (DQN, DQN-PE, A2C, TRPO and PPO) on four
casual schemas, and the results are shown in Table 5-8 and
Figure 2-5.

In general, 3-lever tasks are easier than 4-lever tasks, be-
cause there are more solutions to find in the latter case. Specif-
ically, for rewards that do not encourage finding multiple so-
lutions, such as Reward B and N, it is quite difficult for agents
to find all the solutions, and agents are frequently biased to
one specific solution. In other words, agents memorize a sin-
gle solution instead of learning the abstract, multi-solution
causal schema. As for the reward strategies that encourage
finding multiple solutions, Reward U is the best for most of
the agents. In addition, for some importance-sampling based
policy gradient methods (PPO/TRPO), an extra penalty (Re-
ward N) can slightly improve the stability and final results.

In the Reward N+M and Reward N+M+P strategies, we
introduce some reward shaping techniques, including reward
multiplier and partial sequence bonus, to mitigate the sparse
reward problem. However, the results are worse and more
unstable. We posit that this may be caused by the positive
reward for non-unique solutions. Although the agents are
encouraged to find new solutions using the multiplied reward,
nothing prevents agents from being biased towards a specific
solution, yielding a sub-optimal policy. To eliminate this, we
may need to adjust the learning rate dynamically as solutions
are found. Thus selecting hyper-parameters for the last 2
reward strategies is challenging, and the results are difficult
to match expectations.

Another interesting result is the performance of value-
based methods (DQN, DQN-PE). For all casual schemas and
reward strategies, these methods do not perform well under
any of our experiments. Since the lever settings vary between
trials, it extremely difficult for the agent to build a universal
value function based on discrete state-action input (Edmonds
et al. 2018). The casual schema remains the same, but the
value function learned is not directly based on the abstract
casual state. The RL agents examined do not appear able to
construct a representation capable of inferring the connection

between the explicit discrete state and the abstract casual
state.

E.4 Transfer Experiments
In transfer experiments, we first train our agents in a 3-lever
task and them to a 4-lever task. We perform quantitative
evaluations on the target 4-lever task for all the transferred
models. Additionally, we also compare them with the models
that trained on a 4-lever task from scratch (i.e.; baseline
experiments). If the agents form useful abstract structural
representations of tasks, we expect them to complete the 4-
lever task faster than training from scratch. All 5 algorithms
and 6 reward strategies are considered. The results are listed
in Table 9-10 and Figure 6-8.

Reward strategies that were not effective in baseline ex-
periments were also not effective in transfer experiments,
as expected. Baseline experiments showed that policy-based
methods (A2C, PPO, TRPO) with explicit encouragement to
multi-solution performed better; these agents mastered most
of the solutions (Table 7-8). As we mentioned above, if an
agent is able to establish a concept to the corresponding ca-
sual schema, it should have comparable transfer performance
regarding the performance of agent training on a 4-lever task
from scratch, and it is also expected to converge faster. To ver-
ify this, we can make a comparisons between Table 7-8 and
Table 9-10. However, for both CC4 and CE4 casual schemas,
there is a significant gap between transfer performance and
training performance. Even under the most effective reward
strategies (Reward U, Reward U+N, and Reward N+M), the
agents find it hard to match the corresponding training per-
formance, indicating negative transfer.

E.5 Empirical results of MAML
Here we separately present the empirical results of MAML
since it is a meta-learning approach that does not comes from
the same category as other transfer learning methods (see
Table 1). We conduct experiments on MAML with only the
reward strategy of unique solutions (Reward U) as this strat-
egy overall provides the best performances. All the numerical
results are presented in Table 3 and Table 4 for CC4 and CE4
scenarios respectively, while the learning curves can be found
in Table 8.

As the meta optimizer we use in MAML is TRPO (Schul-
man et al. 2015), we compare the adaption results with TRPO
in transfer experiments on CC4/CE4, which can be found in
the second row of Figure 6 and Figure 7. The results indicate
that during few-shot adaption phase, MAML overall outper-
forms than fine-tuning policy previously learned on 3-lever
task with TRPO, which demonstrates that the transferring,
or adaption do benefit from meta-learning from both the 3
and 4-lever tasks. However, when comparing with the oracle
baseline results that directly training on 4-lever tasks (see the
second row of Figure 4 and Figure 5), there is still a signifi-
cant performance gap, which indicates that the MAML agent
cannot master the target tasks well. Namely, being similar as
all the fine-tuning methods, meta-learning on the previous
task with same causal schema can improve neither the perfor-
mances of subsequent policy learning on target task nor the
convergence properties but misleads the policy learning even



with similar causal schema. This demonstrates that the state-
of-the-art meta-learning approach also may not be able to
establish a useful concept toward the causal schemas among
the tasks it encounters during the meta-learning phase.
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Table 3: Summary of RL results. Averaged Attempt Amount (Averaged by last 30 trials) for CC4.

DQN DQN-PE A2C TRPO PPO MAML
CC4, baseline 696.47 690.93 27.23 6.59 8.75 610.8
CC4, transfer 698.52 699.92 30.27 658.45 77.46 510.8

Table 4: Summary of RL results. Averaged Attempt Amount (Averaged by last 30 trials) for CE4.

DQN DQN-PE A2C TRPO PPO MAML
CE4, baseline 697.64 700.00 30.05 36.15 121.14 363.9
CE4, transfer 694.01 697.56 657.16 510.60 700.00 401.9

Table 5: Averaged Attempt Amount (Averaged by last 30 trials) for CC3.

DQN DQN-PE A2C TRPO PPO
Reward B 687.80 693.35 538.01 674.94 690.87
Reward U 691.59 686.67 12.36 3.79 4.54

Reward B+N 674.93 692.74 610.29 691.33 700.00
Reward U+N 673.71 691.97 12.93 3.48 4.05
Reward N+M 669.58 692.86 69.39 5.61 283.34

Reward N+M+P 673.13 684.25 19.47 40.38 422.75

Table 6: Averaged Attempt Amount (Averaged by last 30 trials) for CE3.

DQN DQN-PE A2C TRPO PPO
Reward B 689.24 686.97 568.61 666.95 560.89
Reward U 676.01 685.63 14.97 3.56 4.23

Reward B+N 684.61 680.53 489.33 660.83 630.46
Reward U+N 684.05 684.09 13.97 3.56 11.00
Reward N+M 694.21 684.50 14.45 3.68 143.81

Reward N+M+P 691.77 691.62 15.60 3.71 560.75

Table 7: Averaged Attempt Amount (Averaged by last 30 trials) for CC4.

DQN DQN-PE A2C TRPO PPO
Reward B 700.00 699.86 700.00 700.00 700.00
Reward U 696.47 690.93 27.23 6.59 8.75

Reward B+N 672.02 699.38 700.00 700.00 700.00
Reward U+N 688.61 700.00 67.69 283.51 7.09
Reward N+M 692.19 700.00 326.39 6.43 562.75

Reward N+M+P 686.15 697.21 490.77 173.35 589.14

Table 8: Averaged Attempt Amount (Averaged by last 30 trials) for CE4.

DQN DQN-PE A2C TRPO PPO
Reward B 698.44 699.14 700.00 667.14 700.00
Reward U 697.64 700.00 30.05 36.15 121.14

Reward B+N 700.00 698.72 700.00 679.21 700.00
Reward U+N 700.00 693.59 35.25 247.35 415.17
Reward N+M 700.00 693.61 45.39 81.79 267.13

Reward N+M+P 698.47 691.17 34.06 64.90 367.52



Table 9: Averaged Attempt Amount (Averaged by last 30 trials) for CC3-CC4.

DQN DQN-PE A2C TRPO PPO
Reward B 698.61 699.12 700.00 700.00 700.00
Reward U 699.87 699.85 24.68 644.59 85.17

Reward B+N 686.29 698.27 700.00 700.00 700.00
Reward U+N 684.68 700.00 60.99 700.00 7.32
Reward N+M 674.48 700.00 372.51 700.00 683.41

Reward N+M+P 686.89 698.09 59.55 700.00 576.51

Table 10: Averaged Attempt Amount (Averaged by last 30 trials) for CE3-CE4.

DQN DQN-PE A2C TRPO PPO
Reward B 687.13 700.00 700.00 700.00 700.00
Reward U 693.39 699.67 616.62 483.27 700.00

Reward B+N 698.43 698.86 700.00 700.00 700.00
Reward U+N 700.00 694.74 156.80 700.00 638.09
Reward N+M 698.55 700.00 326.29 700.00 700.00

Reward N+M+P 693.49 700.00 510.08 700.00 700.00
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Figure 2: Results of different reward strategies on Common-Cause in 3-lever task (CC3).
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Figure 3: Results of different reward strategies on Common-Effect in 3-lever task (CE3).
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Figure 4: Results of different reward strategies on Common-Cause in 4-lever task (CC4).
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Figure 5: Results of different reward strategies on Common-Effect in 4-lever task (CE4).
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Figure 6: Results of different reward strategies on transfer to CC4 from CC3 (CC3-CC4).
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Figure 7: Results of different reward strategies on transfer to CE4 from CE3 (CE3-CE4).
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Figure 8: Results using MAML on transfer to CE4/CC4 from CE3/CC3 (CE3/CC3-CE4/CC4) with reward strategy of unique
solutions. 1st row: meta-learning on CC3 and CC4 tasks. 2nd row: meta-learning on CE3 and CE4 tasks. 3rd row: adaption to
CC4 task with policy meta-learned on CC3 and CC4. 4th row: adaption to CE4 task with policy meta-learned on CE3 and CE4.
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