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Abstract

Learning transferable knowledge across similar but different
settings is a fundamental component of generalized intelli-
gence. In this paper, we approach the transfer learning chal-
lenge from a causal theory perspective. Our agent is endowed
with two basic yet general theories for transfer learning: (i)
a task shares a common abstract structure that is invariant
across domains, and (ii) the behavior of specific features of
the environment remain constant across domains. We adopt
a Bayesian perspective of causal theory induction and use
these theories to transfer knowledge between environments.
Given these general theories, the goal is to train an agent by
interactively exploring the problem space to (i) discover, form,
and transfer useful abstract and structural knowledge, and (ii)
induce useful knowledge from the instance-level attributes ob-
served in the environment. A hierarchy of Bayesian structures
is used to model abstract-level structural causal knowledge,
and an instance-level associative learning scheme learns which
specific objects can be used to induce state changes through
interaction. This model-learning scheme is then integrated
with a model-based planner to achieve a task in the Open-
Lock environment, a virtual “escape room” with a complex
hierarchy that requires agents to reason about an abstract, gen-
eralized causal structure. We compare performances against a
set of predominate model-free reinforcement learning (RL) al-
gorithms. RL agents showed poor ability transferring learned
knowledge across different trials. Whereas the proposed model
revealed similar performance trends as human learners, and
more importantly, demonstrated transfer behavior across trials
and learning situations.1

1 Introduction
The ability of agents to learn and reuse knowledge is a
fundamental characteristic of general intelligence and is es-
sential for agents to succeed in novel circumstances (Legg
and Hutter 2007). Humans demonstrate a remarkable abil-
ity to transfer causal knowledge between environments gov-
erned by the same underlying mechanics, in spite of ob-
servational changes to the features of the environment (Ed-
monds et al. 2018). Early psychological research framed
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Abstract

Learning transferable knowledge across similar but different
settings is a fundamental component to generalized intelli-
gence. In this paper, we approach the transfer learning chal-
lenge from a causal theory perspective. Our agent is endowed
with two basic yet general theories for transfer learning: (i) a
task shares a common abstract structure that is invariant across
domains, and (ii) the behavior of specific features of the envi-
ronment remain constant across domains. We adopt a Bayesian
perspective of causal theory induction and use these theories
to transfer knowledge between environments. Given these
general theories, the goal is to train an agent by interactively
exploring the problem space to (i) discover, form, and trans-
fer useful abstract and structural knowledge, and (ii) induce
useful knowledge from the instance-level attributes observed
in the environment. Specifically, the agent seeks to learn a
model capturing both specific environments and environments
in general. A hierarchy of Bayesian structures is used to model
abstract-level structural causal knowledge, and an instance-
level associative learning scheme learns which specific objects
can be used to induce state changes through interaction. This
model-learning scheme is then integrated with a model-based
planner to achieve a task in the OpenLock environment, a
virtual “escape room” with a complex hierarchy that requires
agents to reason about an abstract, generalized causal structure.
We compare performances against a set of predominate rein-
forcement learning (RL) algorithms. RL agents showed poor
ability transferring learned knowledge across different trials.
Whereas the proposed model revealed similar performance
trends as human learners, and more importantly, demonstrated
transfer behavior across trials and learning situations.1

1 Introduction
The ability of agents to learn and reuse knowledge is a
fundamental characteristic of general intelligence and is es-
sential for agents to succeed in novel circumstances (Legg
and Hutter 2007). Humans demonstrate a remarkable abil-
ity to transfer causal knowledge between environments gov-
erned by the same underlying mechanics, in spite of ob-
servational changes to the features of the environment (Ed-
monds et al. 2018). Early psychological research framed
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Figure 1: (a) Starting configuration of a 3-lever OpenLock
room. The arm in the middle can interact with levers by either
pushing outward or pulling inward, achieved by clicking
either the outer or inner regions of the levers’ radial tracks.
Light gray levers are always locked; however, this is unknown
to agents. The door can be pushed only after being unlocked.
The green button serves as the mechanism to push on the
door. The black circle on the door indicates whether or not
the door is unlocked; locked if present, unlocked if absent.
(b) Pushing on a lever. (c) Opening the door.

causal understanding as learning stimulus-response relation-
ships through observation in classical conditioning experi-
mental paradigms (Shanks and Dickinson 1988; Rescorla
and Wagner 1972). However, more recent studies show
human understanding of causal mechanisms in the distal
world (Holyoak and Cheng 2011) is more complex than
covariation between observed (perceptual) variables; e.g.,
humans explore and experiment with dynamic physical sce-
narios to refine causal hypotheses (Bramley et al. 2018;
Stahl and Feigenson 2015).

Since the associative account, researchers have demon-
strated that humans rely heavily on the discovery of abstract
causal structure (Waldmann and Holyoak 1992) and causal
strength (Cheng 1997) to uncover causal relationships. Si-
multaneously, causal graphical models and Bayesian sta-
tistical inference have been developed to provide a gen-
eral representational framework for how causal structure
and strength are discovered (Griffiths and Tenenbaum 2005;

Figure 1: (a) Starting configuration of a 3-lever OpenLock
room. The arm can interact with levers by either pushing
outward or pulling inward, achieved by clicking either the
outer or inner regions of the levers’ radial tracks, respectively.
Light gray levers are always locked; however, this is unknown
to agents. The door can be pushed only after being unlocked.
The green button serves as the mechanism to push on the
door. The black circle on the door indicates whether or not
the door is unlocked; locked if present, unlocked if absent.
(b) Pushing on a lever. (c) Opening the door.

causal understanding as learning stimulus-response relation-
ships through observation in classical conditioning experi-
mental paradigms (Shanks and Dickinson 1988; Rescorla
and Wagner 1972). However, more recent studies show
human understanding of causal mechanisms in the distal
world is more complex than covariation between observed
(perceptual) variables (Holyoak and Cheng 2011); e.g., hu-
mans explore and experiment with dynamic physical sce-
narios to refine causal hypotheses (Bramley et al. 2018;
Stahl and Feigenson 2015).

Since the associative account, researchers have demon-
strated that humans uncover causal relationships through
the discovery of abstract causal structure (Waldmann and
Holyoak 1992) and causal strength (Cheng 1997). Simul-
taneously, causal graphical models and Bayesian statisti-
cal inference have been developed to provide a general
representational framework for how causal structure and
strength are discovered (Griffiths and Tenenbaum 2005;



2009; Tenenbaum, Griffiths, and Kemp 2006; Bramley,
Lagnado, and Speekenbrink 2015; Bramley et al. 2017;
Holyoak and Cheng 2011). Under such a framework, causal
connections encode a structural model of the world. States
represent some status in the world, and connections between
states imply the presence of a causal relationship. However,
a critical component in causal learning is active interaction
with the physical world, based on whether perceived infor-
mation matches predictions from causal hypotheses. In this
work, we combine causal learning (a form of model-building)
with a model-based planner to effectively achieve tasks in
environments where dynamics are unknown.

In contrast to this work beyond the associative account
of causal understanding, recent success in the field of deep
reinforcement learning (RL) has produced a wide body of re-
search, showcasing agents learning how to play games (Mnih
et al. 2015; Silver et al. 2016; Schulman et al. 2015;
2017) and develop complex robotic motor skills (Levine
et al. 2016; Lillicrap et al. 2015) using associative learn-
ing schemes. However, the majority of model-free RL meth-
ods still have great difficulty transferring learned policies
to new environments with consistent underlying mechan-
ics but some dissimilar surface features (Zhang et al. 2018;
Kansky et al. 2017). This deficiency is due to the limited
scope of the agent’s overall objective: learning which actions
will likely lead to future rewards based on the current state
of the environment. In traditional RL architectures, changes
to the location and orientation of critical elements (instance-
level) in the agent’s environment appear as entirely new
states, even though their functionality often remains the same
(in the abstract-level). Since model-free RL agents do not
attempt to encode transferable rules governing their environ-
ment, new situations appear as entirely new worlds. Although
an agent can devise expert-level strategies through experi-
ences in an environment, once that environment is perturbed,
the agent must repeat an extensive learning process to relearn
an effective policy in the altered environment.

In this work, the transfer learning problem is viewed as
a combination of instance-level associative learning and
abstract-level causal learning. We propose: (i) a bottom-up
associative learning scheme that determines which attributes
are associated with changes in the environment, and (ii) a
top-down causal structure learning scheme that infers which
atomic causal structures are useful for a task. The outcomes
of actions are used to update beliefs about the causal hypoth-
esis space, and our agent learns a dynamics model capable
of solving our task. Specifically, we utilize a virtual “escape
room” where agents are trapped in an empty room with a
locked door. There is a series of conspicuous levers placed
around the room with which an agent may interact. Agents
placed in such a room may randomly push or pull on the
levers to revise their theory about the door’s locking mecha-
nism based on observed changes in the environment’s state.
Once an agent discovers a solution, the agent is placed back
into the same room but tasked with finding the next (different)
solution. The agent “escapes” from the room after finding all
of the solutions that can be used to unlock the door.

After completing (escaping) a single room, the agent is
placed into a similar room, but with newly positioned levers.

Although the levers are in different positions, the rules gov-
erning this new room are the same as the last. Thus, the
agent’s task is to identify the role of each lever, according to
the previously learned rules. Because these rules are abstract
descriptions of the latent state of the escape room, we refer to
the underlying theory as a causal schema (Heider 1958); i.e.,
a conceptual organization of events identified as cause and
effect. Once learned, an agent is able to transfer the learned
schema despite different arrangements of levers in the room.
Finally, we task agents with transferring knowledge with a
different but similar causal schema. The new schema may
add additional levers (nodes in a graphical model) or, in a
more challenging way, rearrange the structure.

This paper integrates multiple modeling approaches to
produce a highly capable agent that can learn causal schemas
and transfer knowledge to new scenarios. The contribution
of this paper is threefold:
1. Learning a bottom-up associative theory that encodes

which objects and actions contribute to causal relations;
2. Learning which top-down atomic causal schemas are solu-

tions, thereby learning generalized abstract task structure;
3. Integrating the top-down and bottom-up learning scheme

with a model-based planner to optimally select interven-
tions from causal hypotheses.
The remainder of this paper is organized as follows: Sec-

tion 2 describes the OpenLock task. We present the proposed
method of causal theory induction and intervention selection
in Section 3 and Section 4, respectively. Section 5 compares
the performance of the proposed model against various RL
algorithms. Section 6 concludes the paper with discussions.

2 OpenLock Task
The OpenLock task, originally presented in Edmonds et al.
2018, requires agents to “escape” from a virtual room by
unlocking and opening a door. The door is unlocked by ma-
nipulating the levers in a particular sequence (see Fig. 1a).
Each lever can be manipulated using the robotic arm to push
or pull on levers. Only a subset of the levers, specifically grey
levers, are involved in unlocking the door (i.e., active levers).
White levers are never involved in unlocking the door (i.e.,
inactive levers); however, this information is not provided
to agents. Thus, at the instance-level, agents are expected
to learn that grey levers are always part of solutions and
white levers are not. Agents are also tasked with finding all
solutions in the room, instead of a single solution.

Schemas: The door locking mechanism is governed by
two causal schemas: Common Cause (CC) and Common Ef-
fect (CE). We use the terms Common Cause 3 (CC3) and
Common Effect 3 (CE3) for schemas with three levers in-
volved in solutions, and Common Cause 4 (CC4) and Com-
mon Effect 4 (CE4) with four levers; see Fig. 2. Three-lever
trials have two solutions; four-lever trials have three solutions.
Agents are required to find all solutions within a specific room
to ensure that they form either CC or CE schema structure; a
single solution corresponds to a causal chain.

Constraints: Agents also operate under an action-limit
constraint, where only 3 actions (referred to as an attempt)
can be used to (i) push or pull on (active or inactive) levers, or
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Figure 2: (a) Common Cause 3 (CC3) causal structure. (b)
Common Effect 3 (CE3) causal structure. (c) Common Cause
4 (CC4) causal structure. (d) Common Effect 4 (CE4) causal
structure. L0, L1, L2 denote different locks, and D the door.

(ii) push open the door. This action-limit constraint prevents
the search depth of interactions with the environment. After
3 actions, regardless of the outcome, the attempt terminates,
and the environment resets. Regardless of whether the agent
finds all solutions, agents are also constrained to a limited
number of attempts in a particular room (referred to as a trial;
i.e., a sequence of attempts in a room, resulting in finding all
the solutions or running out of attempts). An optimal agent
will use at most N + 1 attempts to complete a trial, where N
is the number of solutions in the trial. One attempt would be
used to identify the role of every lever in the abstract schema,
and N attempts would be used for each solution.

Training: Training sessions contain only 3-lever trials.
After finishing a trial, the agent is placed in another trial (i.e.,
room) with the same underlying causal schema but with a
different arrangement of levers. If agents are forming a useful
abstraction of task structure, the knowledge they acquired
in previous trials should accelerate their ability to find all
solutions in the present and future trial.

Testing: In the transfer phase, we examine agents’ ability
to generalize the learned abstract causal schema to differ-
ent but similar environments. We use four transfer condi-
tions consisting of (i) congruent cases where the transfer
schema adopt the same structure but with an additional lever
(CE3-CE4 and CC3-CC4), and (ii) incongruent cases where
the underlying schema is changed with an additional lever
(CC3-CE4 and CE3-CC4). We compare these transfer results
against two baseline conditions (CC4 and CE4), where the
agent is trained in a sequence of 4-lever trials.

While seemingly simple, this task is unique and challeng-
ing for several reasons. First, requiring the agent to find all
solutions rather than a single solution enforces the task as a
CC or CE structure, instead of a single causal chain. Second,
transferring the agent between trials with the same underlying
causal schema but different lever positions encourages effi-
cient agents to learn an abstract representation of the causal
schema, rather than learning instance-level policies tailored
to a specific trial. We would expect agents unable to form this
abstraction to perform poorly in any transfer condition. Third,
the congruent and incongruent transfer conditions test how
well agents are able to adapt their learned knowledge to dif-
ferent but similar causal circumstances. These characteristics
of the OpenLock task present challenges for current machine
learning algorithms, especially model-free RL algorithms.

3 Causal Theory Induction
Causal theory induction provides a Bayesian account of how
hierarchical causal theories can be induced from data (Grif-
fiths and Tenenbaum 2005; 2009; Tenenbaum, Griffiths, and
Kemp 2006). The key insight is: hierarchy enables abstrac-
tion. At the highest level, a theory provides general back-
ground knowledge about a task or environment. Theories
consist of principles, principles lead to structure, and struc-
ture leads to data. The hierarchy used here is shown in Fig. 3a.
Our agent utilizes two theories to learn a model of the Open-
Lock environment: (i) an instance-level associative theory
regarding which attributes and actions induce state changes in
the environment, denoted as the bottom-up β theory, and (ii)
an abstract-level causal structure theory about which atomic
causal structures are useful for the task, denoted as the top-
down γ theory.

Notation, Definition, and Space: A hypothesis space,
ΩC , is defined over possible causal chains, c ∈ ΩC . Each
chain is defined as a tuple of subchains: c = (c0, . . . , ck),
where k is the length of the chain and each subchain is de-
fined as a tuple ci = (ai, si, cr

a
i , cr

s
i ). Each ai is an action

node that the agent can execute, si is a state node, crai is a
causal relation that defines how a state si transitions under
an action ai, and crsi is a causal relation that defines how
state si is affected by changes to the previous state, si−1.
Each si is defined by a set of time-invariant attributes, φi and
time-varying fluents, fi (Thielscher 1998; Maclaurin 1742;
Newton and Colson 1736); i.e., si = (φi, fi). Action nodes
can be directly intervened on, but state nodes cannot. This
means an agent can directly influence (i.e., execute) an ac-
tion, but how those actions affect the world must be actively
learned. The structure of the general causal chain is shown
in the uninstantiated causal chain in Fig. 3a. As an example
using Fig. 1a and the first causal chain in the causal chain
level of Fig. 3a, if the agent executes push on the upper lever,
the lower lever may transition from pulled to pushed, and the
left lever may transition from locked to unlocked.

The space of states is defined as ΩS = Ωφ×ΩF , where the
space of attributes Ωφ consists of position and color, and the
space of fluents ΩF consists of binary values for lever status
(pushed or pulled) and lever lock status (locked or unlocked).
The space of causal relations is defined as ΩCR = ΩF ×ΩF ,
capturing the possibly binary transitions between previous
fluent values and the next fluent values.

State nodes encapsulate both the time-invariant (attributes)
and time-varying (fluents) components of an object. At-
tributes are defined by low-level features (e.g., position, color,
shape, orientation). These low-level attributes provide general
background knowledge about how specific objects change
under certain actions; e.g., which levers can be pushed/pulled.

Method Overview: Our agent induces instance-level
knowledge regarding which objects (i.e., instances) can
produce causal state changes through interaction (see Sec-
tion 3.1) and simultaneously learns an abstract structural
understanding of the task (i.e., schemas; see Section 3.2).
The two learning mechanisms are combined to form a causal
theory of the environment, and the agent uses this theory to
reason about the optimal action to select based on past ex-

Figure 2: (a) Common Cause 3 (CC3) causal structure. (b)
Common Effect 3 (CE3) causal structure. (c) Common Cause
4 (CC4) causal structure. (d) Common Effect 4 (CE4) causal
structure. L0, L1, L2 denote different locks, and D the door.

(ii) push open the door. This action-limit constraint prevents
the search depth of interactions with the environment. After
3 actions, regardless of the outcome, the attempt terminates,
and the environment resets. Regardless of whether the agent
finds all solutions, agents are also constrained to a limited
number of attempts in a particular room (referred to as a trial;
i.e., a sequence of attempts in a room, resulting in finding all
the solutions or running out of attempts). An optimal agent
will use at most N + 1 attempts to complete a trial, where N
is the number of solutions in the trial. One attempt would be
used to identify the role of every lever in the abstract schema,
and N attempts would be used for each solution.

Training: Training sessions contain only 3-lever trials.
After finishing a trial, the agent is placed in another trial (i.e.,
room) with the same underlying causal schema but with a
different arrangement of levers. If agents are forming a useful
abstraction of task structure, the knowledge they acquired
in previous trials should accelerate their ability to find all
solutions in the present and future trials.

Transfer: In the transfer phase, we examine agents’ abil-
ity to generalize the learned abstract causal schema to dif-
ferent but similar environments. We use four transfer con-
ditions consisting of (i) congruent cases where the transfer
schema adopts the same structure but with an additional lever
(CE3-CE4 and CC3-CC4), and (ii) incongruent cases where
the underlying schema is changed with an additional lever
(CC3-CE4 and CE3-CC4). We compare these transfer results
against two baseline conditions (CC4 and CE4), where the
agent is trained in a sequence of 4-lever trials.

While seemingly simple, this task is unique and challeng-
ing for several reasons. First, requiring the agent to find all
solutions rather than a single solution enforces the task as a
CC or CE structure, instead of a single causal chain. Second,
transferring the agent between trials with the same underlying
causal schema but different lever positions encourages effi-
cient agents to learn an abstract representation of the causal
schema, rather than learning instance-level policies tailored
to a specific trial. We would expect agents unable to form this
abstraction to perform poorly in any transfer condition. Third,
the congruent and incongruent transfer conditions test how
well agents are able to adapt their learned knowledge to dif-
ferent but similar causal circumstances. These characteristics
of the OpenLock task present challenges for current machine
learning algorithms, especially model-free RL algorithms.

3 Causal Theory Induction
Causal theory induction provides a Bayesian account of how
hierarchical causal theories can be induced from data (Grif-
fiths and Tenenbaum 2005; 2009; Tenenbaum, Griffiths, and
Kemp 2006). The key insight is: hierarchy enables abstrac-
tion. At the highest level, a theory provides general back-
ground knowledge about a task or environment. Theories
consist of principles, principles lead to structure, and struc-
ture leads to data. The hierarchy used here is shown in Fig. 3a.
Our agent utilizes two theories to learn a model of the Open-
Lock environment: (i) an instance-level associative theory
regarding which attributes and actions induce state changes in
the environment, denoted as the bottom-up β theory, and (ii)
an abstract-level causal structure theory about which atomic
causal structures are useful for the task, denoted as the top-
down γ theory.

Notation, Definition, and Space: A hypothesis space,
ΩC , is defined over possible causal chains, c ∈ ΩC . Each
chain is defined as a tuple of subchains: c = (c0, . . . , ck),
where k is the length of the chain, and each subchain is de-
fined as a tuple ci = (ai, si, cr

a
i , cr

s
i ). Each ai is an action

node that the agent can execute, si is a state node, crai is a
causal relation that defines how a state si transitions under
an action ai, and crsi is a causal relation that defines how
state si is affected by changes to the previous state, si−1.
Each si is defined by a set of time-invariant attributes, φi and
time-varying fluents, fi (Thielscher 1998; Maclaurin 1742;
Newton and Colson 1736); i.e., si = (φi, fi). Action nodes
can be directly intervened on, but state nodes cannot. This
means an agent can directly influence (i.e., execute) an ac-
tion, but how the action affects the world must be actively
learned. The structure of the general causal chain is shown
in the uninstantiated causal chain in Fig. 3a. As an example
using Fig. 1a and the first causal chain in the causal chain
level of Fig. 3a, if the agent executes push on the upper lever,
the lower lever may transition from pulled to pushed, and the
left lever may transition from locked to unlocked.

The space of states is defined as ΩS = Ωφ×ΩF , where the
space of attributes Ωφ consists of position and color, and the
space of fluents ΩF consists of binary values for lever status
(pushed or pulled) and lever lock status (locked or unlocked).
The space of causal relations is defined as ΩCR = ΩF ×ΩF ,
capturing the possibly binary transitions between previous
fluent values and the next fluent values.

State nodes encapsulate both the time-invariant (attributes)
and time-varying (fluents) components of an object. At-
tributes are defined by low-level features (e.g., position, color,
and orientation). These low-level attributes provide general
background knowledge about how specific objects change
under certain actions; e.g., which levers can be pushed/pulled.

Method Overview: Our agent induces instance-level
knowledge regarding which objects (i.e., instances) can
produce causal state changes through interaction (see Sec-
tion 3.1) and simultaneously learns an abstract structural
understanding of the task (i.e., schemas; see Section 3.2).
The two learning mechanisms are combined to form a causal
theory of the environment, and the agent uses this theory to
reason about the optimal action to select based on past ex-
periences (i.e., interventions; see Section 4). After taking an
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. . .<latexit sha1_base64="NXTVkOsAfTg5I7QIbMKKxEzGwmQ=">AAADWnicbVJNbxMxEHUTPtoUaAvcuKyIKnFIV9ltJLggVXDhWCTSVIqjyuudJFb8JdtLE6z9EVzhlyHxY7B3g0RTRlrp7Ty/N+PxFJoz64bDX3ud7oOHjx7vH/QOnzx9dnR88vzKqspQGFPFlbkuiAXOJIwdcxyutQEiCg6TYvUx8pOvYCxT8ovbaJgJspBszihxITXBvFTO9m6O+8N02ERyH2Rb0EfbuLw56bzHpaKVAOkoJ9ZOs6F2M0+MY5RD3cOVBU3oiixgGqAkAuzMN/3WyWnIlMlcmfBJlzTZfxWeCGs3oggnBXFLu8vF5P+4aeXm72aeSV05kLQtNK944lQSL5+UzAB1fBMAoYaFXhO6JIZQF0bUu1PGsdW3uk1FyFlhiNl4SjgdOANgB1pZFofI5GJAjFG3dhDMmLQDuyQabLoAJcAZRgenvSRECVSZZu421aF3A5oTGuW7jFBGLyPROm314b6Grf+6xwEpbkOPkethCbdUCUFk6XF48Y1dKuOavuppNpuex+fBoinLfWOIl4Vae2wqDlNcMgFrbXB8kYhlnmMHaxf/87M01w4HIVnPfD+rfTrSrq5bF7ECI89Gotr6xZkHkR/XPmzGpvai9rLGbb9+lNUhwsJlu+t1H1zlaXae5p/z/sWH7erto1foNXqDMvQWXaBP6BKNEUUr9B39QD87v7ud7kH3sD3a2dtqXqA70X35BxgdFXk=</latexit>

upper left

lower

door
<latexit sha1_base64="S7AQN2X/L6ZOtkwIJE4l1hghrbE="></latexit>

left door

upper

lower
<latexit sha1_base64="QkPI+F2W47k+XwGvB+PhIYOpBPU="></latexit>

lower right

door

left
<latexit sha1_base64="KH1TRbQ/IsqgacvFFoRtGZiWoVs="></latexit>

. . .<latexit sha1_base64="NXTVkOsAfTg5I7QIbMKKxEzGwmQ="></latexit>

left

lower

door

push

push

push

{PL ) PH}

{PL ) PH}

{PL ) PH}

{L ) U}

{L ) U}

<latexit sha1_base64="wp/s+BACnKqC1juANGJVt/1OgW0="></latexit>

upper

lower

door

push

push

push

{PL ) PH}

{PL ) PH}

{PL ) PH}

{L ) U}

{L ) U}

<latexit sha1_base64="HnA3xUZXGnXpIbTblPaFS3Bwlcw="></latexit>

upper

push

{PL ) PH}
<latexit sha1_base64="BsjJ1UoC2rvsU7qr940h3AuQv6A="></latexit>

lower

push

{PL ) PH}
{L ) U}

<latexit sha1_base64="DX9PIxvIBSsAYmvqYr4eabZZLRs="></latexit>

door

push{L ) U}

<latexit sha1_base64="Mr6x9OElrk4DvyT7NRzXi9/sJXo="></latexit>

p(gM ; �)
<latexit sha1_base64="lSQZE0vaY6wDmhnMQWxwR2JSvNM=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBahXkpSBQUvRS9ehAr2A9pYNttNunQ3ibubQgn9HV48KOLVH+PNf+O2zUFbHww83pthZp4Xc6a0bX9buZXVtfWN/GZha3tnd6+4f9BUUSIJbZCIR7LtYUU5C2lDM81pO5YUC4/Tlje8mfqtEZWKReGDHsfUFTgImc8I1kZy43LweHfVDbAQ+LRXLNkVewa0TJyMlCBDvVf86vYjkggaasKxUh3HjrWbYqkZ4XRS6CaKxpgMcUA7hoZYUOWms6Mn6MQofeRH0lSo0Uz9PZFiodRYeKZTYD1Qi95U/M/rJNq/dFMWxommIZkv8hOOdISmCaA+k5RoPjYEE8nMrYgMsMREm5wKJgRn8eVl0qxWnLNK9f68VLvO4sjDERxDGRy4gBrcQh0aQOAJnuEV3qyR9WK9Wx/z1pyVzRzCH1ifP70JkW0=</latexit>

p(gA; �)
<latexit sha1_base64="/wR3EEE2acAGwM7DTtidHB4s1+k=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBahXkpSBQUvVS8eK9gPaGPZbDfp0t0k7m4KJfR3ePGgiFd/jDf/jds2B219MPB4b4aZeV7MmdK2/W3lVlbX1jfym4Wt7Z3dveL+QVNFiSS0QSIeybaHFeUspA3NNKftWFIsPE5b3vB26rdGVCoWhQ96HFNX4CBkPiNYG8mNy8Hj9VU3wELg016xZFfsGdAycTJSggz1XvGr249IImioCcdKdRw71m6KpWaE00mhmygaYzLEAe0YGmJBlZvOjp6gE6P0kR9JU6FGM/X3RIqFUmPhmU6B9UAtelPxP6+TaP/STVkYJ5qGZL7ITzjSEZomgPpMUqL52BBMJDO3IjLAEhNtciqYEJzFl5dJs1pxzirV+/NS7SaLIw9HcAxlcOACanAHdWgAgSd4hld4s0bWi/Vufcxbc1Y2cwh/YH3+AKp5kWE=</latexit>

p(gI |do(q); �)
<latexit sha1_base64="2kWmEETbepqdi+vQ9FF10szEIh0=">AAAB/HicbVDLSsNAFJ34rPUV7dJNsAjtpiRVUHBTdKO7CvYBbSyTySQdOjOJMxMhxPorblwo4tYPceffOG2z0NYDFw7n3Mu993gxJVLZ9rextLyyurZe2Chubm3v7Jp7+20ZJQLhFopoJLoelJgSjluKKIq7scCQeRR3vNHlxO88YCFJxG9VGmOXwZCTgCCotDQwS3ElvLt+9KPKffW8H0LGYHVglu2aPYW1SJyclEGO5sD86vsRShjmClEoZc+xY+VmUCiCKB4X+4nEMUQjGOKephwyLN1sevzYOtKKbwWR0MWVNVV/T2SQSZkyT3cyqIZy3puI/3m9RAVnbkZ4nCjM0WxRkFBLRdYkCcsnAiNFU00gEkTfaqEhFBApnVdRh+DMv7xI2vWac1yr35yUGxd5HAVwAA5BBTjgFDTAFWiCFkAgBc/gFbwZT8aL8W58zFqXjHymBP7A+PwBT5WT5w==</latexit>

p(c|do(q); �)
<latexit sha1_base64="0y9lJws27FV2R5Fu9PD2L3ewklE=">AAAB+nicbVDLSgMxFM3UV62vqS7dBIvQbspMFRTcFN24rGAf0A4lk8m0oUlmTDJKmfZT3LhQxK1f4s6/MW1noa0HLhzOuZd77/FjRpV2nG8rt7a+sbmV3y7s7O7tH9jFw5aKEolJE0cskh0fKcKoIE1NNSOdWBLEfUba/uhm5rcfiVQ0Evd6HBOPo4GgIcVIG6lvF+MyngRR+aFy1RsgzlGlb5ecqjMHXCVuRkogQ6Nvf/WCCCecCI0ZUqrrOrH2UiQ1xYxMC71EkRjhERqQrqECcaK8dH76FJ4aJYBhJE0JDefq74kUcaXG3DedHOmhWvZm4n9eN9HhpZdSESeaCLxYFCYM6gjOcoABlQRrNjYEYUnNrRAPkURYm7QKJgR3+eVV0qpV3bNq7e68VL/O4siDY3ACysAFF6AObkEDNAEGT+AZvII3a2K9WO/Wx6I1Z2UzR+APrM8f9k2TKA==</latexit>

p(ci|do(⌧, q); �)
<latexit sha1_base64="2KvixuzZO2C5vAPNVBZ5Z1pL400=">AAACAnicbVDLSgNBEJz1GeNr1ZN4GQxCAhJ2o6DgJejFYwTzgGwIvbOzyZCZ3XVmVggxePFXvHhQxKtf4c2/cfI4aGJBQ1HVTXeXn3CmtON8WwuLS8srq5m17PrG5ta2vbNbU3EqCa2SmMey4YOinEW0qpnmtJFICsLntO73rkZ+/Z5KxeLoVvcT2hLQiVjICGgjte39JE/a7CGI856G9PiucOF1QAgo4Ladc4rOGHieuFOSQ1NU2vaXF8QkFTTShINSTddJdGsAUjPC6TDrpYomQHrQoU1DIxBUtQbjF4b4yCgBDmNpKtJ4rP6eGIBQqi980ylAd9WsNxL/85qpDs9bAxYlqaYRmSwKU451jEd54IBJSjTvGwJEMnMrJl2QQLRJLWtCcGdfnie1UtE9KZZuTnPly2kcGXSADlEeuegMldE1qqAqIugRPaNX9GY9WS/Wu/UxaV2wpjN76A+szx995pYy</latexit>

(a)
<latexit sha1_base64="wnCYp9k7ym6+w2psvUSlSiCYxy4=">AAAB8XicbVA9TwJBEJ3DL8Qv1NJmIzHBhtyhiZZEG0tMBIxwIXvLAhv29i67c0Zy4V/YWGiMrf/Gzn/jAlco+JJJXt6bycy8IJbCoOt+O7mV1bX1jfxmYWt7Z3evuH/QNFGiGW+wSEb6PqCGS6F4AwVKfh9rTsNA8lYwup76rUeujYjUHY5j7od0oERfMIpWeih3kD9hSien3WLJrbgzkGXiZaQEGerd4lenF7Ek5AqZpMa0PTdGP6UaBZN8UugkhseUjeiAty1VNOTGT2cXT8iJVXqkH2lbCslM/T2R0tCYcRjYzpDi0Cx6U/E/r51g/9JPhYoT5IrNF/UTSTAi0/dJT2jOUI4toUwLeythQ6opQxtSwYbgLb68TJrVindWqd6el2pXWRx5OIJjKIMHF1CDG6hDAxgoeIZXeHOM8+K8Ox/z1pyTzRzCHzifP06ykK0=</latexit>

Abstract-level Structure Learning
<latexit sha1_base64="+P6NMwUqgm9P9MbJAokMsZn2P6M=">AAACCnicbVA9TwJBEN3DL8Qv1NJmlZjYSO6w0BK1sbDAKB8JELK3zMGGvb3L7hwJIdQ2/hUbC42x9RfY+W9cPgoFXzLJy3szmZnnx1IYdN1vJ7W0vLK6ll7PbGxube9kd/cqJko0hzKPZKRrPjMghYIyCpRQizWw0JdQ9XvXY7/aB21EpB5wEEMzZB0lAsEZWqmVPbz0DWrG8VRCHyS9R51wTDTQW2BaCdVpZXNu3p2ALhJvRnJkhlIr+9VoRzwJQSGXzJi658bYHDKNgksYZRqJgZjxHutA3VLFQjDN4eSVET22SpsGkbalkE7U3xNDFhozCH3bGTLsmnlvLP7n1RMMLppDoeIEQfHpoiCRFCM6zoW2hQaOcmAJ41rYWynvsnEyNr2MDcGbf3mRVAp57yxfuCvkilezONLkgByRE+KRc1IkN6REyoSTR/JMXsmb8+S8OO/Ox7Q15cxm9skfOJ8/YMmasQ==</latexit>

(b)
<latexit sha1_base64="v0C1SROR1pMUbMaRK5tCQm0ofRo=">AAAB8XicbVA9TwJBEJ3DL8Qv1NJmIzHBhtyhiZZEG0tMBIxwIXvLAhv29i67c0Zy4V/YWGiMrf/Gzn/jAlco+JJJXt6bycy8IJbCoOt+O7mV1bX1jfxmYWt7Z3evuH/QNFGiGW+wSEb6PqCGS6F4AwVKfh9rTsNA8lYwup76rUeujYjUHY5j7od0oERfMIpWeih3kD9hGkxOu8WSW3FnIMvEy0gJMtS7xa9OL2JJyBUySY1pe26Mfko1Cib5pNBJDI8pG9EBb1uqaMiNn84unpATq/RIP9K2FJKZ+nsipaEx4zCwnSHFoVn0puJ/XjvB/qWfChUnyBWbL+onkmBEpu+TntCcoRxbQpkW9lbChlRThjakgg3BW3x5mTSrFe+sUr09L9WusjjycATHUAYPLqAGN1CHBjBQ8Ayv8OYY58V5dz7mrTknmzmEP3A+fwBQOJCu</latexit>

Subchain Posterior
<latexit sha1_base64="fi2GJSJl+8fbpo6NA90oGyQYvqg=">AAAB+3icbVDLSgNBEOz1GeMrxqOXwSB4CrvxoMegF48RzQOSJcxOepMhszPLzKwYQn7FiwdFvPoj3vwbJ4+DJhY0FFXddHdFqeDG+v63t7a+sbm1ndvJ7+7tHxwWjooNozLNsM6UULoVUYOCS6xbbgW2Uo00iQQ2o+HN1G8+ojZcyQc7SjFMaF/ymDNqndQtFO+ziA0ol6SmjEXNle4WSn7Zn4GskmBBSrBArVv46vQUyxKUlglqTDvwUxuOqbacCZzkO5nBlLIh7WPbUUkTNOF4dvuEnDmlR2KlXUlLZurviTFNjBklketMqB2YZW8q/ue1MxtfhWMu08yiZPNFcSaIVWQaBOlxjcyKkSOUae5uJS4ITZlLweRdCMHyy6ukUSkHF+XKXaVUvV7EkYMTOIVzCOASqnALNagDgyd4hld48ybei/fufcxb17zFzDH8gff5AxLXlHU=</latexit>

(c)
<latexit sha1_base64="3r0F2MUJfOW8aJVrYPSL1yk62qM=">AAAB8XicbVA9TwJBEJ3DL8Qv1NJmIzHBhtyhiZZEG0tMBIxwIXvLAhv29i67c0Zy4V/YWGiMrf/Gzn/jAlco+JJJXt6bycy8IJbCoOt+O7mV1bX1jfxmYWt7Z3evuH/QNFGiGW+wSEb6PqCGS6F4AwVKfh9rTsNA8lYwup76rUeujYjUHY5j7od0oERfMIpWeih3kD9hyian3WLJrbgzkGXiZaQEGerd4lenF7Ek5AqZpMa0PTdGP6UaBZN8UugkhseUjeiAty1VNOTGT2cXT8iJVXqkH2lbCslM/T2R0tCYcRjYzpDi0Cx6U/E/r51g/9JPhYoT5IrNF/UTSTAi0/dJT2jOUI4toUwLeythQ6opQxtSwYbgLb68TJrVindWqd6el2pXWRx5OIJjKIMHF1CDG6hDAxgoeIZXeHOM8+K8Ox/z1pyTzRzCHzifP1G+kK8=</latexit>

Instance-level Inductive Learning
<latexit sha1_base64="wwgu5s/VjL41ay4QR89ldzOZmwQ=">AAACCnicbVA9SwNBEN2LXzF+nVrarAbBxnAXCy2DNgYsIpgPSELY20ySJXt7x+5cIITUNv4VGwtFbP0Fdv4bNx+FJj4YeLw3w8y8IJbCoOd9O6mV1bX1jfRmZmt7Z3fP3T+omCjRHMo8kpGuBcyAFArKKFBCLdbAwkBCNejfTPzqALQRkXrAYQzNkHWV6AjO0Eot97ioDDLF4VzCACQtqnbCUQyA3gHTSqhuy816OW8Kukz8OcmSOUot96vRjngSgkIumTF134uxOWIaBZcwzjQSAzHjfdaFuqWKhWCao+krY3pqlTbtRNqWQjpVf0+MWGjMMAxsZ8iwZxa9ififV0+wc9UcCRUnCIrPFnUSSTGik1xoW2jgKIeWMK6FvZXyHtOMo00vY0PwF19eJpV8zr/I5e/z2cL1PI40OSIn5Iz45JIUyC0pkTLh5JE8k1fy5jw5L8678zFrTTnzmUPyB87nDyb9mow=</latexit>

p(ci|⇢i, do(⌧, q); �,�) / p(⇢i|ci;�)p(ci|do(⌧, q); �)
<latexit sha1_base64="g9Ak2WYNN488WRn+67eG+psVNhA="></latexit>

p(⇢i|ci;�)
<latexit sha1_base64="YEqFQoQfFBJKxbevCGS2/3+qTSE=">AAAB/HicbVDLSsNAFJ34rPUV7dLNYBHqpiRVUHBTdOOygn1AE8JkOmmHTmbCzEQIsf6KGxeKuPVD3Pk3TtsstPXAhcM593LvPWHCqNKO822trK6tb2yWtsrbO7t7+/bBYUeJVGLSxoIJ2QuRIoxy0tZUM9JLJEFxyEg3HN9M/e4DkYoKfq+zhPgxGnIaUYy0kQK7ktQ8ORIBfcQBvfJCotFpYFedujMDXCZuQaqgQCuwv7yBwGlMuMYMKdV3nUT7OZKaYkYmZS9VJEF4jIakbyhHMVF+Pjt+Ak+MMoCRkKa4hjP190SOYqWyODSdMdIjtehNxf+8fqqjSz+nPEk14Xi+KEoZ1AJOk4ADKgnWLDMEYUnNrRCPkERYm7zKJgR38eVl0mnU3bN64+682rwu4iiBI3AMasAFF6AJbkELtAEGGXgGr+DNerJerHfrY966YhUzFfAH1ucPLJyUdQ==</latexit>

p(⇢i|ai;�)
<latexit sha1_base64="ZOINPfr8eWQ9B5/FlipI3mv0o8s=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSxC3ZSkCgpuim5cVrAPaEKYTCft0MlMmJkINRZ/xY0LRdz6H+78G6dtFtp64MLhnHu5954wYVRpx/m2CkvLK6trxfXSxubW9o69u9dSIpWYNLFgQnZCpAijnDQ11Yx0EklQHDLSDofXE799T6Sigt/pUUL8GPU5jShG2kiBfZBUPDkQAX1EAb30QqLRCQzsslN1poCLxM1JGeRoBPaX1xM4jQnXmCGluq6TaD9DUlPMyLjkpYokCA9Rn3QN5Sgmys+m14/hsVF6MBLSFNdwqv6eyFCs1CgOTWeM9EDNexPxP6+b6ujCzyhPUk04ni2KUga1gJMoYI9KgjUbGYKwpOZWiAdIIqxNYCUTgjv/8iJp1aruabV2e1auX+VxFMEhOAIV4IJzUAc3oAGaAIMH8AxewZv1ZL1Y79bHrLVg5TP74A+szx+GL5Sd</latexit>

1<latexit sha1_base64="TtIgPQprnJE4HSS++PuM3etxya8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6F9Va87JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPe+uMuQ==</latexit>

grey
<latexit sha1_base64="sOLvsTR+UxzYVUnkzdX/sW+KxoQ=">AAAB9HicbVBNS8NAEN3Ur1q/qh69BIvgqSRV0GPRi8cK9gPaUDbbSbt0s4m7k2II/R1ePCji1R/jzX/jts1BWx8MPN6bYWaeHwuu0XG+rcLa+sbmVnG7tLO7t39QPjxq6ShRDJosEpHq+FSD4BKayFFAJ1ZAQ19A2x/fzvz2BJTmkXzANAYvpEPJA84oGsnrITwhYjZUkE775YpTdeawV4mbkwrJ0eiXv3qDiCUhSGSCat11nRi9jCrkTMC01Es0xJSN6RC6hkoagvay+dFT+8woAzuIlCmJ9lz9PZHRUOs09E1nSHGkl72Z+J/XTTC49jIu4wRBssWiIBE2RvYsAXvAFTAUqSGUKW5utdmIKsrQ5FQyIbjLL6+SVq3qXlRr95eV+k0eR5GckFNyTlxyRerkjjRIkzDySJ7JK3mzJtaL9W59LFoLVj5zTP7A+vwBueeSuA==</latexit>

white<latexit sha1_base64="nKwcoA8lyTNvxqfnHKNcCW2YpWM=">AAAB9XicbVDLTgJBEJz1ifhCPXqZSEw8kV000SPRi0dM5JHASmaHBibMzm5mekWy4T+8eNAYr/6LN//GAfagYCWdVKq6090VxFIYdN1vZ2V1bX1jM7eV397Z3dsvHBzWTZRoDjUeyUg3A2ZACgU1FCihGWtgYSChEQxvpn7jEbQRkbrHcQx+yPpK9ARnaKWHNsITIqajgUCYdApFt+TOQJeJl5EiyVDtFL7a3YgnISjkkhnT8twY/ZRpFFzCJN9ODMSMD1kfWpYqFoLx09nVE3pqlS7tRdqWQjpTf0+kLDRmHAa2M2Q4MIveVPzPayXYu/JToeIEQfH5ol4iKUZ0GgHtCg0c5dgSxrWwt1I+YJpxtEHlbQje4svLpF4ueeel8t1FsXKdxZEjx+SEnBGPXJIKuSVVUiOcaPJMXsmbM3JenHfnY9664mQzR+QPnM8fhWSTLA==</latexit>

1<latexit sha1_base64="TtIgPQprnJE4HSS++PuM3etxya8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6F9Va87JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPe+uMuQ==</latexit>

push
<latexit sha1_base64="ZTLkaZ952L97iqh9ne54vt5r3/Y=">AAAB9HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx4xkUcCGzI7DDBhdnad6SWSDd/hxYPGePVjvPk3DrAHBSvppFLVne6uIJbCoOt+O7m19Y3Nrfx2YWd3b/+geHjUMFGiGa+zSEa6FVDDpVC8jgIlb8Wa0zCQvBmMbmd+c8y1EZF6wEnM/ZAOlOgLRtFKfgf5EyKmcWKG026x5JbdOcgq8TJSggy1bvGr04tYEnKFTFJj2p4bo59SjYJJPi10EsNjykZ0wNuWKhpy46fzo6fkzCo90o+0LYVkrv6eSGlozCQMbGdIcWiWvZn4n9dOsH/tp0LFCXLFFov6iSQYkVkCpCc0ZygnllCmhb2VsCHVlKHNqWBD8JZfXiWNStm7KFfuL0vVmyyOPJzAKZyDB1dQhTuoQR0YPMIzvMKbM3ZenHfnY9Gac7KZY/gD5/MHx8OSwQ==</latexit>
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Figure 3: Illustration of top-down and bottom-up processes. (a) Abstract-level structure learning hierarchy. At the top, atomic
schemas provide the agent with environment-invariant task structures. At the bottom, causal subchains represent a single
time-step in the environment. The agent constructs the hierarchy and makes decisions at the causal subchain resolution. Atomic
schemas gM provide the top-level structural knowledge. Abstract schemas gA are structures specific to a task, but not a particular
environment. Instantiated schemas gI are structures specific to a task and a particular environment. Causal chains c are structures
representing a single attempt; an abstract, uninstantiated causal chain is also shown for notation. Each subchain ci is a structure
corresponding to a single action. PL, PH, L, U denote fluents pulled, pushed, locked, and unlocked, respectively. (b) The subchain
posterior computed using the abstract-level structure learning and instance-level inductive learning. (c) Instance-level inductive
learning. Each likelihood term is learned from causal events, ρi. Likelihood terms are combined for actions, positions, and colors.

action, the agent observes the effects and updates its model
of both instance-level and abstract-level knowledge.

3.1 Instance-level Inductive Learning
The agent seeks to learn which instance-level components of
the scene are associated with causal events; i.e., we wish to
learn a likelihood term to encode the probability that a causal
event will occur. We adhere to a basic yet general associative
learning theory: causal relations induce state changes in
the environment, and non-causal relations do not, referred
to as the bottom-up β theory. We learn two independent

components: attributes and actions, and we assume they are
independent to learn a general associative theory, rather than
specific knowledge regarding an exact causal circumstance.

We define Ωφ, the space of attributes, such as position and
color, and learn which attributes are associated with levers
that induce state changes in the environment. Specifically, an
object is defined by its observable features; i.e., the attributes
φ. We also define ΩA, a set of actions and learn a background
likelihood over which actions are more likely to induce a state
change. We assume attributes and actions are independent
and learn each independently.



Our agent learns a likelihood term for each attribute φij
and action ai using Dirichlet distributions because they serve
as a conjugate prior to the multinomial distribution. First,
a global Dirichlet parameterized by αG is used across all
trials to encode long-term beliefs about various environments.
Upon entering a new trial, a local Dirichlet parameterized
by αL ∈ [1, 10] is initialized to kαG, where k is a normaliz-
ing factor. Such design of using a scaled local distribution
is necessary to allow αL to adapt faster than αG within one
trial; i.e., agents must adapt more rapidly to the current trial
compared to across all trials. Thus, we have a set of Dirichlet
distributions to maintain beliefs: a Dirichlet for each attribute
(e.g., position, and color) as well as a Dirichlet for actions.
Similarly, we maintain a Dirichlet distribution over each ac-
tion ai to encode beliefs regarding which actions are more
likely to cause a state change, independent from any particu-
lar circumstance.

We introduce ρ to represent a causal event or observation
occurring in the environment. Our agent wishes to assess the
likelihood of a particular causal chain producing a causal
event. The agent computes this likelihood by decomposing
the chain into subchains

p(ρ|c;β) =
∏
ci∈c

p(ρi|ci;β), (1)

where p(ρi|ci;β) is formulated as

p(ρi|ci;β) ∝ p(ρi|ai;β)
∏

φij∈si
si∈ci

p(ρi|φij ;β), (2)

where p(ρi|φij ;β) and p(ρi|ai;β) follow multinomial dis-
tributions parameterized by a sample from the attribute and
action Dirichlet distribution, respectively.2 Intuitively, this
bottom-up associative likelihood encodes a naive Bayesian
prediction of how likely a particular subchain is to be in-
volved with any causal event by considering how frequently
the attributes and actions have been in causal events in the
past, without regard for task structure. For example, we would
expect an agent in OpenLock to learn that grey levers move
under certain circumstances and white levers never move.
This instance-level learning provides the agent with task-
invariant, basic knowledge about which subchains are more
likely to produce a causal effect.

3.2 Abstract-level Structure Learning
In this section, we outline how the agent learns abstract
schemas; these schemas are used to encode generalized
knowledge about task structure that is invariant to a specific
observational environment.

A space of atomic causal schemas, ΩgM , of causal chain,
CC, and CE, serve as categories for the Bayesian prior. The
belief in each atomic schema is modeled as a multinomial
distribution, whose parameters are defined by a Dirichlet dis-
tribution. This root Dirichlet distribution’s parameters are
updated after every trial according to the top-down causal
theory γ, computed as the minimal graph edit distance be-
tween an atomic schema and the trial’s solution structure.

2See supplementary materials for additional details.

This process yields a prior over atomic schemas, denoted as
p(gM ; γ), and provides the prior for the top-down inference
process. Such abstraction allows agents to transfer beliefs be-
tween the abstract notions of CC and CE without considering
task-specific requirements; e.g., 3- or 4-lever configurations.

Next, we compute the belief in abstract instantiations of
the atomic schemas. These abstract schemas share structural
properties with atomic schemas but have a structure that
matches the task definition. For instance, each schema must
have three subchains to account for the 3-action limit imposed
by the environment and should have N trajectories, where N
is the number of solutions in the trial. Each abstract schema
is denoted as gA, and the space of abstract schemas, denoted
ΩgA , is enumerated. The belief in an abstract causal schema
is computed as

p(gA; γ) =
∑

gM∈ΩgM

p(gA|gM )p(gM ; γ). (3)

The abstract structural space can be used to transfer beliefs
between rooms; however, we need to perform inference over
settings of positions and colors in this trial as the agent
executes. Thus, the agent enumerates a space of instantiated
schemas ΩgI , where each gI is an instantiated schema. The
agent then computes the belief in an instantiated schema as

p(gI |do(q); γ) =
∑

gA∈ΩgA

p(gI |gA, do(q))p(gA; γ), (4)

where do(q) represents the do operator (Pearl 2009), and
q represents the solutions already executed. Conditioning
on do(q) constrains the space to have instantiated solutions
that contain the solutions already discovered by the agent in
this trial. Causal chains c define the next lower level in the
hierarchy, where each chain corresponds to a single attempt.
The belief in a causal chain is computed as

p(c|do(q); γ) =
∑

gI∈ΩgI

p(c|gI , do(q))p(gI |do(q); γ). (5)

Finally, the agent computes the belief in each possible sub-
chain as

p(ci|do(τ, q); γ) =
∑
c∈ΩC

p(ci|c, do(τ, q))p(c|do(q); γ), (6)

where do(τ, q) represents the intervention of performing the
action sequence executed thus far in this attempt τ , and per-
forming all solutions found thus far q. This hierarchical pro-
cess allows the agent to learn and reason about abstract task
structure, taking into consideration the specific instantiation
of the trial, as well as the agent’s history within this trial.2

Additionally, if the agent encounters an action sequence
that does not produce a causal event, the agent prunes all
chains that contain the action sequence from ΩC and prunes
all instantiated schemas that contain the corresponding chain
from ΩgI . This pruning strategy means the agent assumes
the environment is deterministic and updates its theory about
which causal chains are causally plausible through interac-
tions on-the-fly.



4 Intervention Selection
Our agent’s goal is to pick the action it believes has the
highest chance of (i) being causally plausible in the en-
vironment and (ii) being part of the solution to the task.
We decompose each subchain ci into its respective parts,
ci = (ai, si, cr

a
i , cr

s
i ). The agent combines the top-down and

bottom-up processes into a final subchain posterior:

p(ci|ρi, do(τ, q); γ, β) ∝ p(ρi|ci;β)p(ci|do(τ, q); γ). (7)

Next, the agent marginalizes over causal relations and states
to obtain a final, action-level term to select interventions:

p(ai|ρi, do(τ, q); γ, β) =∑
si∈ΩS

∑
crai ∈ΩCR

∑
crsi ∈ΩCR

p(ai, si, cr
a
i , cr

s
i |ρi, do(τ, q); γ, β). (8)

The agent uses a model-based planner to produce action
sequences capable of opening the door (following human
participant instructions in (Edmonds et al. 2018)). The goal is
defined as reaching a particular state s∗, and the agent seeks
to execute the action at to maximize the posterior subject
to the constraints that the action appears in the set of chains
that satisfy the goal, ΩC∗ = {c ∈ ΩC | s∗ ∈ c}. We define
the set of actions that appear in chains satisfying the goal as
ΩA∗ = {a ∈ ΩA|∃c ∈ ΩC∗ ,∃ s, cra, crs |(a, s, cra, crs) ∈
c}. The agent’s final planning goal is

a∗t = arg max
ai∈ΩA∗

p(ai|ρi, do(τ, q); γ, β). (9)

At each time-step, the agent selects the action that maximizes
this planning objective and updates its beliefs about the world
as described in Section 3.1 and Section 3.2. This iterative pro-
cess consists of optimal decision-making based on the agent’s
current understanding of the world, followed by updating the
agent’s beliefs based on the observed outcome.

5 Experiments
We compare results between predominate model-free RL
algorithms with the proposed theory-based causal transfer
model. Specifically, we compare the proposed method against
Deep Q-Network (DQN) (Mnih et al. 2015), DQN with pri-
oritized experience replay (DQN (PE)) (Schaul et al. 2016),
Advantage Actor-Critic (A2C) (Mnih et al. 2016), Trust Re-
gion Policy Optimization (TRPO) (Schulman et al. 2015),
Proximal Policy Optimization (PPO) (Schulman et al. 2017),
and Model-Agnostic Meta-Learning (MAML) (Finn, Abbeel,
and Levine 2017) agents. We use the term positive transfer
and negative transfer to indicate that agent performance ben-
efits from or is hindered by the training phase, respectively.

5.1 Experimental Setup
The proposed model follows the same procedure as the one
used for human studies presented in Edmonds et al. 2018.
Baseline (no transfer) agents are placed in 4-lever scenarios
for all trials. Transfer agents are evaluated in two phases:
training and transfer. For every training trial, the agent is
placed into a 3-lever trial and allowed 30 attempts to find all
solutions. In the transfer phase, the agent is tasked with a 4-
lever trial. Critically, the agent only sees each trial (room) one

time, so generalizations must be formed quickly to transfer
between trials successfully. See Section 2 for more details.

When executing various model-free RL agents under this
experimental setup, no meaningful learning takes place. In-
stead, we train RL agents by looping through all rooms re-
peatedly (thereby seeing each room multiple times). Agents
are also allowed 700 attempts in each trial to find all solutions.
During training, agents execute for 200 training iterations,
where each iteration consists of looping through all six 3-
lever trials. During transfer, agents execute for 200 transfer
iterations, where each iteration consists of looping through
all five 4-lever trials. Note that the setup for RL agents is
advantageous; in comparison, both the proposed model and
human subjects are only allowed 30 attempts (versus 700)
during the training and 1 iteration (versus 200) for transfer.

RL agents operate directly on the state of the simulator
encoded as a 16-dimensional binary vector: (i) the status of
each of the 7 levers (pushed or pulled), (ii) the color of each
of the 7 levers (grey or white), (iii) the status of the door (open
or closed) and (iv) the status of the door lock indicator (locked
or unlocked). The 7-dimensional encoding of the status and
color of each lever encodes the position of each lever; e.g., the
0-th index corresponds to the upper-right position. Despite
direct access to the simulator’s state, RL approaches were
unable to form a transferable task abstraction.

Additionally, we utilized a plethora of reward functions to
explore under what circumstances these RL approaches may
succeed. Our agents used sparse reward functions, shaped
reward functions, and conditional reward functions that en-
courage agents to find unique solutions.3 A reward function
that only rewards for unique solutions performed best, mean-
ing agents were only rewarded the first time they found a
particular solution. This is similar to the human experimen-
tal setup, under which participants were informed when they
found a solution for the first time (thereby making progress to-
wards the goal of finding all solutions) but were not informed
they executed the same solution multiple times (thereby not
making progress towards the goal).

5.2 Reinforcement Learning Results
The model-free RL results, shown in Fig. 4, demonstrate that
A2C, TRPO, and PPO are capable of learning how to solve
the OpenLock task from scratch. However, A2C in the CC4
condition is the only agent showing positive transfer; every
other agent in every condition shows negative transfer.

These results indicate that current model-free RL algo-
rithms are capable of learning how to achieve this task; how-
ever, the capability to transfer the learned abstract knowledge
is markedly different compared to human performance in Ed-
monds et al. 2018. Due to the overall negative transfer trends
shown by nearly every RL agent, we conclude that these RL
algorithms cannot capture the correct abstractions to transfer
knowledge between the 3-lever training phase and the 4-lever
transfer phase. Note that the RL algorithms found the CE4
condition more difficult than CC4, a result also shown in our
proposed model results and human participants.

3See supplementary materials for the numerous architectures,
parameters, and reward functions used.



Figure 4: RL results for baseline and transfer conditions. Baseline (no transfer) results show the best-performing algorithms
(PPO, TRPO) achieving approximately 10 and 25 attempts by the end of the baseline training for CC4 and CE4, respectively.
A2C is the only algorithm to show positive transfer; A2C performed better with training for the CC4 condition. The last 50
iterations are not shown due to the use of a smoothing function.

5.3 Theory-based Causal Transfer Results

The results using the proposed model are shown in Fig. 5.
These results are qualitatively and quantitatively similar to
the human participant results presented in Edmonds et al.
2018, and starkly different from the RL results. We execute
40 agents in each condition, matching the number of human
subjects described in Edmonds et al. 2018.

Our agent does not require looping over trials multiple
times; it is capable of learning and generalizing from seeing
each trial only one time. In the baseline agents, the CE4 condi-
tion was more difficult than CC4; this trend was also observed
in human participants. During transfer, we see a similar per-
formance as the baseline results; however, for congruent
cases (transferring from the same structure with an additional
lever) were easier than incongruent cases (transferring to a
different structure with an additional lever; CE4 transfer);
this result was statistically significant for CE4: t(79) = 3.0;
p = 0.004. For CC4 transfer, no significance was observed
(t(79) = 0.63; p = 0.44), indicating both CC3 and CE3
obtained near-equal performance when transferred to CC4.

These learning results are significantly different from the
RL results; the proposed causal theory-based model is ca-
pable of learning the correct abstraction using instance and
structural learning schemes, showing similar trends as the
human participants. It is worth noting that RL agents were
trained under highly advantageous settings. RL agents: (i)
were given more attempts per trial; and (ii) more importantly,
were allowed to learn in the same trial multiple times. In con-
trast, the present model learns the proper mechanisms to: (i)
transfer knowledge to structurally equivalent but observation-
ally different scenarios (baseline experiments); (ii) transfer
knowledge to cases with structural differences (transfer ex-
periments); and (iii) do so using the same experimental setup
as humans. The model achieves this by understanding which
scene components are capable of inducing state changes in
the environment while leveraging overall task structure.4

4For additional model results and ablations, see supplementary.

6 Conclusion and Discussion
In this work, we show how the theory-based causal transfer
coupled with an associative learning scheme can be used
to learn transferable structural knowledge under both ob-
servationally and structurally varying tasks. We executed a
plethora of model-free RL algorithms, none of which learned
a transferable representation of the OpenLock task, even un-
der favorable baseline and transfer conditions. In contrast, the
proposed model results are not only capable of successfully
completing the task, but also adhere closely to the human
participant results in Edmonds et al. 2018.

These results suggest that current model-free RL methods
lack the necessary learning mechanisms to learn general-
ized representations in hierarchical, structured tasks. Our
model results indicate human causal transfer follows similar
abstractions as those presented in this work, namely learn-
ing abstract causal structures and learning instance-specific
knowledge that connects this particular environment to ab-
stract structures. The model presented here can be used in
any reinforcement learning environment where: (i) the envi-
ronment is governed by a causal structure, (ii) causal cues
can be uncovered from interacting with objects with observ-
able attributes, and (iii) different circumstances share some
common causal properties (structure and/or attributes).

6.1 Discussion
Why is causal learning important for RL? We argue that
causal knowledge provides a succinct, well-studied, and well-
developed framework for representing cause and effect rela-
tionships. This knowledge is invariant to extrinsic rewards
and can be used to accomplish many tasks. In this work,
we show that leveraging abstract causal knowledge can be
used to transfer knowledge across environments with similar
structure but different observational properties.
How can RL benefit from structured causal knowledge?
Model-free RL is apt at learning a representation to maximize
a reward within simple, non-hierarchical environments using
a greedy process. Thus, current approaches do not restrict
or impose learning an abstract structural representation of
the environment. RL algorithms should be augmented with
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Figure 5: Model performance vs. human performance. (a) Proposed model baseline results for CC4/CE4. We see an asymmetry
between the difficulty of CC and CE. (b) Human baseline performance (Edmonds et al. 2018). (c) Proposed model transfer results
for training in CC3/CE3. The transfer results show that transferring to an incongruent CE4 condition (i.e., different structure,
additional lever; i.e., CC3 to CE4) was more difficult than transferring to a congruent condition (i.e., same structure, additional
lever; i.e., CE3 to CE4). However, the agent did not show a significant difference in difficulty when transferring to congruent or
incongruent condition for the CC4 transfer condition. (d) Human transfer performance (Edmonds et al. 2018).

with mechanisms to learn explicit structural knowledge and
jointly optimized to learn both an abstract structural encoding
of the task while maximizing rewards. Learning such struc-
tural knowledge should not only aid in learning transferable
policies but also improve RL in hierarchical environments.
Why is CE more difficult than CC? Human participants,
RL, and the proposed model all found CE more difficult than
CC. A natural question is: why? We posit that it occurs from
a decision-tree perspective. In the CC condition, if the agent
makes a mistake on the first action, the environment will not
change, and the rest of the attempt is bound to fail. However,
should the agent choose the correct grey lever, the agent can
choose either remaining grey levers; both of which will un-
lock the door. Conversely, in the CE condition, the agent has
two grey levers to choose from in the first action; both will un-
lock the lever needed to unlock the door. However, the second
action is more ambiguous. The agent could choose the cor-
rect lever, but it could also choose the other grey lever. Such
complexity leads to more failure paths from a decision-tree
planning perspective. The CC condition receives immediate
feedback on the first action as to whether or not this plan will
fail; the CE condition, on the other hand, has more failure
pathways. We plan to investigate this property further, as this
asymmetry was unexpected and unexplored in the literature.
What other theories may be useful for learning causal
relationships? In this work, we adhere to an associative
learning theory. We adopt the theory that causal relationships
induce state changes. However, other theories may also be
appealing. For instance, the associative theory used does not
directly account for long-term relationships (delayed effects).
More complex theories could potentially account for delayed
effects; e.g., when an agent could not find a causal attribute
for a particular event, the agent could examine attributes
jointly to best explain the causal effect observed.
How can hypothesis space enumeration be avoided? Hy-
pothesis space enumeration can quickly become intractable
as problems increase in size. While this worked used a fixed,
fully enumerated hypothesis space, future work will include
examining how sampling-based approaches can be used to
iteratively generate causal hypotheses. Bramley et al. 2017

showed a Gibbs-sampling based approach; however, this sam-
pling should be guided with top-down reasoning to guide the
causal learning process by leveraging already known causal
knowledge with proposed hypotheses.
How well would model-based RL perform in this task?
Model-based RL may exhibit faster learning within a particu-
lar environment but still lacks mechanisms to form abstrac-
tion mechanisms that enable humanlike transfer. This is an
open research question, and we plan on investigating how
abstraction can be integrated with model-based RL methods.
How is this method different from hierarchical RL? Typ-
ically, hierarchical RL is defined on a hierarchy of goals,
where subgoals represent options that can be executed by a
high-level planner (Chentanez, Barto, and Singh 2005). Each
causally-plausible hypothesis can be seen as an option to exe-
cute. This work seeks to highlight the importance of leverage
causal knowledge to form a model of the world and using
said model to guide a reinforcement learner. In fact, our work
can be recast as a form of hierarchical model-based RL.

6.2 Future Work

Future work should primarily focus on how to integrate the
proposed causal learning algorithm directly with reinforce-
ment learning. An agent capable of integrating causal learn-
ing with reinforcement learning could generalize world dy-
namics (causal knowledge) and goals (rewards) to novel but
similar environments. One challenge, unaddressed in this
paper, is to how to generalize rewards to varied environ-
ments. Traditional reinforcement learning methods, such as
Q-learning, do not provide a mechanism to extrapolate in-
ternal values to similar but different states. In this work, we
showed how extrapolating causal knowledge can aid in un-
covering the causal relationships in similar environments.
Adopting a similar scheme for some form of reinforcement
learning would enable reinforcement learners to succeed in
the OpenLock task without iterating over the trials multiple
time, and could enable one-shot reinforcement learning. Fu-
ture work will also examine how a learner can iteratively
grow a causal hypothesis while incorporating a background
theory of causal relationships.

Figure 5: Model performance vs. human performance. (a) Proposed model baseline results for CC4/CE4. We see an asymmetry
between the difficulty of CC and CE. (b) Human baseline performance (Edmonds et al. 2018). (c) Proposed model transfer results
for training in CC3/CE3. The transfer results show that transferring to an incongruent CE4 condition (i.e., different structure,
additional lever; i.e., CC3 to CE4) was more difficult than transferring to a congruent condition (i.e., same structure, additional
lever; i.e., CE3 to CE4). However, the agent did not show a significant difference in difficulty when transferring to congruent or
incongruent condition for the CC4 transfer condition. (d) Human transfer performance (Edmonds et al. 2018).

mechanisms to learn explicit structural knowledge and jointly
optimized to learn both an abstract structural encoding of the
task while maximizing rewards.
Why is CE more difficult than CC? Human participants,
RL, and the proposed model all found CE more difficult than
CC. A natural question is: why? We posit that it occurs from
a decision-tree perspective. In the CC condition, if the agent
makes a mistake on the first action, the environment will not
change, and the rest of the attempt is bound to fail. However,
should the agent choose the correct grey lever, the agent can
choose either remaining grey levers; both of which will un-
lock the door. Conversely, in the CE condition, the agent has
two grey levers to choose from in the first action; both will un-
lock the lever needed to unlock the door. However, the second
action is more ambiguous. The agent could choose the cor-
rect lever, but it could also choose the other grey lever. Such
complexity leads to more failure paths from a decision-tree
planning perspective. The CC condition receives immediate
feedback on the first action as to whether or not this plan will
fail; the CE condition, on the other hand, has more failure
pathways. We plan to investigate this property further, as this
asymmetry was unexpected and unexplored in the literature.
What other theories may be useful for learning causal
relationships? In this work, we adhere to an associative
learning theory. We adopt the theory that causal relationships
induce state changes. However, other theories may also be
appealing. For instance, the associative theory used does not
directly account for long-term relationships (delayed effects).
More complex theories could potentially account for delayed
effects; e.g., when an agent could not find a causal attribute
for a particular event, the agent could examine attributes
jointly to best explain the causal effect observed. Prior work
has examined structural analogies (Hinrichs and Forbus 2011;
Zhang et al. 2019a; 2019b) and object mappings (Fitzgerald,
Goel, and Thomaz 2018) to facilitate transfer; these may also
be useful to acquire transferable causal knowledge.
How can hypothesis space enumeration be avoided? Hy-
pothesis space enumeration can quickly become intractable
as problems increase in size. While this worked used a fixed,
fully enumerated hypothesis space, future work will include

examining how sampling-based approaches can be used to
iteratively generate causal hypotheses. Bramley et al. 2017
showed a Gibbs-sampling based approach; however, this sam-
pling should be guided with top-down reasoning to guide the
causal learning process by leveraging already known causal
knowledge with proposed hypotheses.
How well would model-based RL perform in this task?
Model-based RL may exhibit faster learning within a particu-
lar environment but still lacks mechanisms to form abstrac-
tions that enable human-like transfer. This is an open research
question, and we plan on investigating how abstraction can
be integrated with model-based RL methods.
How is this method different from hierarchical RL? Typ-
ically, hierarchical RL is defined on a hierarchy of goals,
where subgoals represent options that can be executed by a
high-level planner (Chentanez, Barto, and Singh 2005). Each
causally-plausible hypothesis can be seen as an option to
execute. This work seeks to highlight the importance of lever-
aging causal knowledge to form a world-model and using
said model to guide a reinforcement learner. In fact, our work
can be recast as a form of hierarchical model-based RL.

Future work should primarily focus on how to integrate
the proposed causal learning algorithm directly with rein-
forcement learning. An agent capable of integrating causal
learning with reinforcement learning could generalize world
dynamics (causal knowledge) and goals (rewards) to novel
but similar environments. One challenge, unaddressed in
this paper, is to how to generalize rewards to varied envi-
ronments. Traditional reinforcement learning methods, such
as Q-learning, do not provide a mechanism to extrapolate
internal values to similar but different states. In this work,
we showed how extrapolating causal knowledge can aid in
uncovering the causal relationships in similar environments.
Adopting a similar scheme for some form of reinforcement
learning would enable reinforcement learners to succeed in
the OpenLock task without iterating over the trials multiple
times, and could enable one-shot reinforcement learning. Fu-
ture work will also examine how a learner can iteratively
grow a causal hypothesis while incorporating a background
theory of causal relationships.
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