
Javascript: Control Statements

Chapter 7: Javascript: Control Statements

CS 80: Internet Programming

Instructor: Mark Edmonds

Background and Terminology

Algorithm

• What is an algorithm?
– A procedure for solving a problem. Consists of:

1. The actions to be executed
2. The order in which the actions are to be executed

– Notice: this definitionhasnothing todowith aprogramming language, programstatements,
etc.
* We are abstracting away code into problem solving

Background and Terminology

Pseudocode

• A way to express the essence of an algorithmwithout using a programming language
• Informally, it is a way to expresswhat and how the algorithmdoes something, but doesn’t specify
syntax

• Why is this useful?
– Syntax is cumbersome,many trivial details of the codedonot correspond to theoverarching
problem the algorithm solves

Background and Terminology

Pseudocode

• Example: Leap year

1 // leap year pseudocode
2 if year is divisible by 400 then
3 is_leap_year
4 else if year is divisible by 100 then
5 not_leap_year
6 else if year is divisible by 4 then
7 is_leap_year

Mark Edmonds 1

Javascript: Control Statements

8 else
9 not_leap_year

• This is in between code and English!
• This can be directly converted to code, regardless of programming language used

Background and Terminology

Pseudocode

• There are multiple ways of writing the same program, and we can write multiple versions of
pseudocode

• Example: Compound conditional leap year:

1 leapYear = false
2 if year % 400 == 0
3 leapYear = true
4 else if year % 100 != 0 and year % 4 == 0
5 leapYear = true

• Notice we are just describing the logic behind the programwithout consideration of syntax

Background and Terminology

Pseudocode

• Another example of the same logic encoded in di�erent pseudocode:

1 leapYear = false
2 if year % 400 == 0 or (year % 100 != 0 and year % 4 == 0)
3 leapYear = true

Control Statements

• Prior to the if...else statement, our programs executed sequentially
– Programs executed from top to bottom

• if...else introduced branching, or a conditional jump, meaning the programwould "choose a
fork in the road" based on some boolean evaluation
– Branching enables more powerful programs, since the state of particular variables can vary
with each execution

Mark Edmonds 2

Javascript: Control Statements

– if...else gave us control over what program statements to executes for cases we cared
about

Control Statements

• History lesson: the goto statement
– Instructed a program to jump to a particular line in the program
– Think of a function: "goto the starting line of the called function" and terminates with a
"goto to the next line of the calling function"

– This is a largely deprecated programming practice
– Enabled a "spaghetti programming" where a programwas like a whole bunch of spaghetti
laid out, with each piece of spaghetti representing a goto statement

Control Statements

• Now, imperative languages (Javascript, C, C++, Java, Python, ...) use structed programming that
consists of three control structures
1. sequence structure - execute the program linearly, one right a�er another
2. selection structure - select or ignore a program statement (if...else)
3. repetition structure - repeat the program statement(s) a certain number of times (while,

do...while, for, for...in)

Control Statements

• We canmodel the control structure of a programwith graphical models that show the control
flow of the program
– A flowchart of the possible program executions
– Useful for modeling sub components of a program, but infeasible to model an entire pro-
gram’s execution

Control Statements

Javascript Keywords

Mark Edmonds 3

Javascript: Control Statements

Figure 1: Javascript keywords

Control Statements

• if statement
– Already covered
– Important new terminology in terms of control flow:

* if is a single-selection statement. It selects or ignores a single action (program state-
ment(s))

* We can think of an if statement as having a single entry point and single exit point

Control Statements

• if...else statement
– Already covered
– if...else is a double-selection statement

* Selects among two actions

Control Statements

• Ternary Operator (Conditional Operator)

Mark Edmonds 4

Javascript: Control Statements

• We can shorthand the if else statement with a ternary operator of the following form:

1 cond ? true_action : false_action

• Example:

1 document.writeln(student_grade >= 60 ? "Passed" : "Failed"); //
immediately using the result

2 var courseResult = student_grade >= 60 ? "Passed" : "Failed"; //
assignment to the result

Control Statements

Ternary Operator (Conditional Operator)

• Di�erences with if...else
– Ternary operator returns a value
– This is how the above two examples work (collapse/evaluate the ternary to see...)

* E.g. if student_grade was 50, this the same as calling document.writeln("
Failed"); or assigning pass_fail = "Failed";

Dangling else’s

• We are permitted to write nested if...else statements
• We also don’t have to include the curly braces {}, which start a block statement

– Block statements are groupings of program statements
– You can think of them like compound statements, in the same sense of compound condi-
tionals

Dangling else’s

Variable Scope

• Example block statement:

1 // javascript blocks and scope
2 var a1 = 3;
3 {
4 var a2 = 5;
5 }
6 console.log(a1 + a2);

Mark Edmonds 5

Javascript: Control Statements

• This behavior is di�erent from C/C++!

– Block statements do not introduce scope

Dangling else’s

Variable Scope

• Scope is the "lifetime of a variable"
– When a variable/function goes out of scope, it is not valid to use that variable or function
again

– In the example above, an equivalent C/C++ code segement would fail to compile because
a2would be out of scope

– The scope of a2would be from its declaration to its closing curly brace
• Back to why this matters for if...else...

Dangling else’s

• If we don’t include the curly braces, we have an implicit block statement
– But what problemsmight we encounter with nested if...else’s?

Dangling else’s

• Consider the following possibilities (hint: the indentation does not a�ect the semantic meaning)

1 // dangling else's
2 if (x > 5)
3 if (y > 5)
4 document.writeln("<p>x and y are > 5</p>");
5 else
6 document.writeln("<p>x is <= 5</p>");

1 // dangling else's
2 if (x > 5)
3 if (y > 5)
4 document.writeln("<p>x and y are > 5</p>");
5 else
6 document.writeln("<p>x is <= 5</p>");

Mark Edmonds 6

Javascript: Control Statements

Dangling else’s

• The first indentation reflects the semantics. Why?

1 // dangling else's
2 if (x > 5)
3 if (y > 5)
4 document.writeln("<p>x and y are > 5</p>");
5 else
6 document.writeln("<p>x is <= 5</p>");

1 // dangling else's
2 if (x > 5)
3 if (y > 5)
4 document.writeln("<p>x and y are > 5</p>");
5 else
6 document.writeln("<p>x is <= 5</p>");

Dangling else’s

• If there is no included block statements, a single statement is grouped to the if
– if...else is considered a single conditional statement
– This is part of JavaScript syntax, and is very common across programming languages

• What’s the solution?
– Using block statements fixes this problem because it enforces which if the else belongs
to

Dangling else’s

• Fix:

1 // dangling else's
2 if (x > 5){
3 if (y > 5)
4 document.writeln("<p>x and y are > 5</p>");
5 } else
6 document.writeln("<p>x is <= 5</p>");

• I (personally) recommend always wrapping conditionals, loops, etc. with block statements:

1 // dangling else's

Mark Edmonds 7

Javascript: Control Statements

2 if (x > 5) {
3 if (y > 5){
4 document.writeln("<p>x and y are > 5</p>");
5 }
6 } else {
7 document.writeln("<p>x is <= 5</p>");
8 }

Dangling else’s

• Consider another error-prone situation:

1 // dangling else's
2 if (grade >= 60)
3 document.writeln("<p>Passed</p>");
4 else
5 document.writeln("<p>Failed</p>");
6 document.writeln("<p>You must take this course again.</p>");

• Under what circumstances will "Youmust take this course again" be printed to the user?

Dangling else’s

1 // dangling else's
2 if (grade >= 60)
3 document.writeln("<p>Passed</p>");
4 else
5 document.writeln("<p>Failed</p>");
6 document.writeln("<p>You must take this course again.</p>");

• The Javascript interpreter does not read indentation for semantics

• The last line is not associated with the else

• Semantic version:

1 // dangling else's
2 if (grade >= 60)
3 document.writeln("<p>Passed</p>");
4 else
5 document.writeln("<p>Failed</p>");
6 document.writeln("<p>You must take this course again.</p>");

Mark Edmonds 8

Javascript: Control Statements

Dangling else’s

• Fix:

1 // dangling else's
2 if (grade >= 60)
3 document.writeln("<p>Passed</p>");
4 else {
5 document.writeln("<p>Failed</p>");
6 document.writeln("<p>You must take this course again.</p>");
7 }

Dangling else’s

• The main point: don’t trust indentation!
– Use explicit block statements (through curly braces)

* Youmust use a block if you have more than a single statement under your condition-
al/loop

* I do this all the time, no matter. I personally believe it o�ers a cleaner, more consistent
code style that has better defined semantics

Dangling else’s

• Technical semantics (the actual logic here):
– if and elsewill associate with the next statement
– That statement can be a single program statement, or a compound statement

* Bymaking the next statement a block statement, we avoid the problem completely,
even if we only execute one statement in that block statement.
· Removes ambiguity in all cases while adding minimal amount of lines to your
program (not that ever print source code anyway, so the length of your program
doesn’t really matter)

Errors

• When debugging, we need to evaluate what is causing the problem in our program and howwe
can fix it

• Three main types of errors:
– Syntax errors - invalid code. The compiler/interpreter cannot succesfully execute the pro-
gram. Will be detected by the computer. Basically means you violated the rules of the

Mark Edmonds 9

Javascript: Control Statements

language. Example: forgetting to put a closing curly brace at the end of an if...else.
– Semantic errors - valid code, but does not produce the results you expect. Example: using
the wrong variable or operator somewhere in your code

– Designerrors - valid codeandproduces the results youexpect. However, yourunderstanding
of the problem is wrong. Example: using the wrong forumla for something.

Errors - Semantic & Design

• Semantic and design errors are very similar but have di�erent implications for debugging
– A semantic error means we understand the problem and need to adjust our code to reflect
that understanding

– A design error means we don’t understand the problem and will never be able to produce a
working program

• A design error is a more significant problem than semantic error!

Fixing Errors

• Ways to fix errors:
– Syntax error: computer will usually give a hint as to what’s causing the problem. Go inspect
your code to see what might be wrong (generally easy, but can be incredibly frustrating)

– Semantic error: assuming youhave correct pseudocode, something in your programdoesn’t
match the pseudocode. Compare the two andmake sure the operations match up. This is
when you can’t believe you’ve wasted an hour verifying your pseudocodematches your
code but youmistyped a + for a *.

– Design error: Your pseudocode is wrong. Fix the pseudocode first. There’s no specific
advice to give since this error is always problem-specific. This is when you email your
professor/supervisor/(maybe) customer for guidance.

Reptition (loops)

• Repeat an action a number of times while a condition is true

• Example shopping pseudocode:

1 While there are more items on my shopping list
2 Purchase next item and cross it off my list

• When the condition becomes false, the loop exits

• Critical part: the loopmust do something that will eventually cause the condition to be false

Mark Edmonds 10

Javascript: Control Statements

– Otherwise, we are stuck in an infinite loop!

Reptition (loops)

• Example for shopping:

1 // shopping list
2 var shopping_list = ["pants", "grocercies", "car"];
3 var i = 0;
4 // purchase all items in the list
5 while(i < shopping_list.length)
6 {
7 purchase(shopping_list[i]); // purchase the item
8 i = i + 1; // move to the next item
9 }
10 function purchase(item){
11 window.alert("Purchased " + item);
12 }

Reptition (loops)

• If you think visually, consider the following code flowchart

1 var product = 2;
2 while (product <= 1000)
3 {
4 product = 2 * product;
5 }

Reptition (loops)

• If you think visually, consider the following code + flowchart

Mark Edmonds 11

Javascript: Control Statements

• We can think about a loop as a repeated cycle in a flowchart until a condition becomes false

Exercise

Class Average

• Write pseudocode and javascript to average a class’s scores on an exam.
• The program should prompt the user for the number of students in the class, then ask for each
score.

• The scores should be printed nicely into a table with the average at the bottom.

Exercise

Class Average

• Pseudocode:

1 Set total to zero
2 Set grade counter to zero
3 Input number of students
4 Print table header
5 While grade counter is less than number of students
6 Input the next grade
7 Add the grade into the total
8 Add one to the grade counter
9 Print grade to table
10 Set the class average to the total divided by number of students
11 Print the class average to table

Mark Edmonds 12

Javascript: Control Statements

Exercise: class_average.html

1 <!DOCTYPE html>
2 <html>
3
4 <head>
5 <meta charset="utf-8">
6 <title>Class Average Problem</title>
7 <style>
8 table,
9 th,
10 td {
11 border: 1px solid black;
12 }
13
14 table {
15 border-collapse: collapse;
16 }
17
18 th,
19 td {
20 padding: 15px;
21 text-align: left;
22 }
23 </style>
24 <script>
25 var total; // sum of grades
26 var gradeCounter; // number of grades entered
27 var grade; // grade typed by user
28 var average; // average of all grades
29 // initialization phase
30 total = 0; // clear total
31 gradeCounter = 0;
32 var numStudents = window.prompt("Enter the number of students: ", "

0");
33 numStudents = parseInt(numStudents);
34
35 if (numStudents == 0)
36 {
37 document.writeln("The number of students is 0");
38 }
39 else
40 {

Mark Edmonds 13

../examples/ch7_js_2/class_average.html

Javascript: Control Statements

41 //setup table
42 document.writeln("<table>");
43 document.writeln("<caption>Exam scores</caption>

");
44 document.writeln("<thead>\n<tr>\n<th>Student Number</th>\n<th>

Grade</th>\n</thead>");
45 document.writeln("<tbody>");
46
47 // loop, processing phase
48 while (gradeCounter < numStudents) {
49 // prompt for input and read grade from user
50 grade = window.prompt("Enter integer grade:", "0");
51 // convert grade from a string to an integer
52 grade = parseInt(grade);
53 // add gradeValue to total
54 total = total + grade;
55 // add 1 to gradeCounter
56 gradeCounter = gradeCounter + 1;
57 // add data to table
58 document.writeln("<tr>\n<td>" + gradeCounter + "</td>\n<td>" +

grade + "</td>\n</tr>");
59 } // end while
60
61 // calculate the average
62 average = total / numStudents;
63 // display average of exam grades
64 document.writeln("</tbody>");
65 document.writeln("<tfoot>\n<tr>\n<th>Average</th>\n<th>" +

average + "</th>\n</tr>\n</tfoot>");
66 document.writeln("</table>");
67 }
68 </script>
69 </head>
70
71 <body>
72 </body>
73
74 </html>

Exercise: class_average_functions.html

• Next, let’s consider breaking our program into multiple parts.

Mark Edmonds 14

../examples/ch7_js_2/class_average_functions.html

Javascript: Control Statements

• We’ll have one function to collect the grades
• Another function to display the grades
• And another function to calculate the average

Exercise: class_average_functions.html

1 <!DOCTYPE html>
2 <html>
3
4 <head>
5 <meta charset="utf-8">
6 <title>Class Average Problem</title>
7 <style>
8 table,
9 th,
10 td {
11 border: 1px solid black;
12 }
13
14 table {
15 border-collapse: collapse;
16 }
17
18 th,
19 td {
20 padding: 15px;
21 text-align: left;
22 }
23 </style>
24 <script>
25 function collectGrades() {
26 var total; // sum of grades
27 var gradeCounter; // number of grades entered
28 var grade; // grade typed by user
29 var average; // average of all grades
30 var grades = []; // array to store grades
31 // initialization phase
32 total = 0; // clear total
33 gradeCounter = 0;
34 var numStudents = window.prompt("Enter the number of students: ",

"0");
35 numStudents = parseInt(numStudents);

Mark Edmonds 15

../examples/ch7_js_2/class_average_functions.html

Javascript: Control Statements

36
37 // loop, processing phase
38 while (gradeCounter < numStudents) {
39 // prompt for input and read grade from user
40 grade = window.prompt("Enter integer grade:", "0");
41 // convert grade from a string to an integer
42 grade = parseInt(grade);
43 // add gradeValue to total
44 total = total + grade;
45 // add 1 to gradeCounter
46 gradeCounter = gradeCounter + 1;
47 // add grade to our grades array
48 grades.push(grade);
49 } // end while
50 return grades;
51 }
52
53 function displayGrades(grades, average){
54 if (grades.length == 0)
55 {
56 document.writeln("The number of students is 0");
57 return;
58 }
59 //setup table
60 document.writeln("<table>");
61 document.writeln("<caption>Exam scores</caption>

");
62 document.writeln("<thead>\n<tr>\n<th>Student Number</th>\n<th>

Grade</th>\n</thead>");
63 document.writeln("<tbody>");
64
65 // loop, processing phase
66 for(var i = 0; i < grades.length; i++) {
67 // add data to table
68 document.writeln("<tr>\n<td>" + i + "</td>\n<td>" + grades[i] +

"</td>\n</tr>");
69 } // end while
70
71 // display average of exam grades
72 document.writeln("</tbody>");
73 document.writeln("<tfoot>\n<tr>\n<th>Average</th>\n<th>" +

average + "</th>\n</tr>\n</tfoot>");
74 document.writeln("</table>");

Mark Edmonds 16

Javascript: Control Statements

75 }
76
77 function calculateAverage(array){
78 // loop over grades to calculate average
79 var average = 0;
80 if (array.length > 0){
81 for(var i = 0; i < array.length; i++){
82 average += array[i];
83 }
84 average /= array.length;
85 }
86 return average;
87 }
88
89 var grades = collectGrades();
90
91 var average = calculateAverage(grades);
92
93 displayGrades(grades, average);
94 </script>
95 </head>
96
97 <body>
98 </body>
99
100 </html>

Exercise

Real Estate License

• A college o�ers a course that prepares students for the state licensing exam for real estate brokers.
Last year, 10 of the students who completed this course took the licensing exam. Naturally, the
college wants to know howwell its students performed.

• You’ve been asked to write a script to summarize the results. You’ve been given a list of these 10
students. Next to each name is written a 1 if the student passed the exam and a 2 if the student
failed.

Exercise

Real Estate License

Mark Edmonds 17

Javascript: Control Statements

• Your script should analyze the results of the exam as follows:
1. Input each test result (i.e., a 1 or a 2). Display themessage “Enter result” on the screen each
time the script requests another test result.

2. Count the number of test results of each type.
3. Display a summary of the test results indicating the number of students who passed and
the number of students who failed.

4. If more than eight students passed the exam, print the message “Bonus to instructor!”

Exercise

Real Estate License

• Pseudocode:

1 Initialize passes to zero
2 Initialize failures to zero
3 Initialize student to zero
4 While student counter is less than ten
5 Input the next exam result
6 If the student passed
7 Add one to passes
8 Else
9 Add one to failures
10 Add one to student counter
11 Print the number of passes
12 Print the number of failures
13 If more than eight students passed
14 Print "Bonus to Instructor!";

Exercise: bonus.html

1 <!DOCTYPE html>
2 <!-- Fig. 7.11: analysis.html -->
3 <!-- Examination-results calculation. -->
4 <html>
5
6 <head>
7 <meta charset="utf-8">
8 <title>Analysis of Examination Results</title>
9 <script>
10 // initializing variables in declarations

Mark Edmonds 18

../examples/ch7_js_2/bonus.html

Javascript: Control Statements

11 var passes = 0; // number of passes
12 var failures = 0; // number of failures
13 var student = 0; // student counter
14 var result; // an exam result
15 // process 10 students; counter-controlled loop
16 while (student < 10) {
17 result = window.prompt("Enter result (1=pass,2=fail)", "0");
18 if (result == "1")
19 {
20 passes = passes + 1;
21 }
22 else
23 {
24 failures = failures + 1;
25 }
26 student = student + 1;
27 } // end while
28 document.writeln("<h1>Examination Results</h1>");
29 document.writeln("<p>Passed: " + passes +"; Failed: " + failures +

"</p>");
30
31 if (passes > 8)
32 {
33 document.writeln("<p>Bonus to instructor!</p>");
34 }
35 </script>
36 </head>
37
38 <body></body>
39
40 </html>

Assignment Operators

• Modifying a variable (changing its value) is extremely common. We have a shorthand way doing
this:

1 c = c + 3;
2 c += 3;

• More generally, any statement of the form:

Mark Edmonds 19

Javascript: Control Statements

1 variable = variable operator expression;

• Can always be written as:

1 variable operator= expression; // operator could be +, -, *, /, %
2 // for example
3 c *= 4; // multiply by 4

Assignment Operators

Figure 2: Assignment operators

Mark Edmonds 20

Javascript: Control Statements

Increment and Decrement

Figure 3: Increment and decrement operators

Increment and Decrement

• Key di�erence:
– pre changes the value, then returns the new value
– post returns the current value, then change the value
– These operators break PEMDAS; they have a higher precedence than *, /, %

Increment and Decrement

• Consider the following. Carefully consider the value of counter1 and counter2:

1 var a = 10;
2 var counter1 = 0;
3 var counter2 = 0;
4 var i = 0;
5 while(counter1++ < a)
6 {
7 //loop 1
8 console.log("Loop 1, i: ", i);
9 i++;
10 }
11 i=0;
12 while(++counter2 < a)
13 {
14 //loop 2

Mark Edmonds 21

Javascript: Control Statements

15 console.log("Loop 2, i: ", i);
16 i++;
17 }
18 console.log(counter1);
19 console.log(counter2);

Increment and Decrement

• What will be the final value of counter1 and counter2?

Increment and Decrement

• What will be the final value of counter1 and counter2?
– counter1will be 11 (loop 1 runs 10 times, but counter1 is incremented an extra time (postin-
crement))

– counter2will be 10 (loop 2 runs 9 times)

Additional Repetition Structures

• for
– Functionally equivalent to while

1 for(initialization_statement; loop_condition; loop_end_statement)
2 {
3 // loop body
4 }
5 // in practice
6 for (var i = 0; i < 10; i++)
7 {
8 // loop body
9 }
10 // which is the same as
11 var i = 0;
12 while (i < 10){
13 i++;
14 }

Additional Repetition Structures

• do...while

Mark Edmonds 22

Javascript: Control Statements

– Like a while loop, but guarantees that the loop will execute at least once
– Condition is checked at the end of the loop

1 var i = 0;
2 do {
3 // loop body
4 i++;
5 }
6 while(i < 10);

Example: sortedList.html

1 <!doctype html>
2
3 <!-- sortedList.html -->
4 <!-- Input several names and display them in a sorted list. -->
5 <html>
6 <head>
7 <meta charset="utf-8" />
8 <title>Sorted List</title>
9 </head>
10 <body>
11 <h1>People</h1>
12 <ol id="ol">
13 <script>
14 var name; // name entry
15 var people = []; // array of people
16
17 // get names
18 while (true) {
19 name = prompt("Name: ", "Done");
20 if (name === "Done") {
21 break; // stop getting names
22 }
23 people.push(name); // add name to end of array
24 }
25
26 // sort the array
27 people.sort();
28
29 // output the list

Mark Edmonds 23

../examples/ch7_js_2/sortedList.html

Javascript: Control Statements

30 document.getElementById("ol").innerHTML = "" + people.join("<
li>") + "";

31 </script>
32 </body>
33 </html>

Mark Edmonds 24

	Chapter 7: Javascript: Control Statements
	Background and Terminology
	Background and Terminology
	Background and Terminology
	Background and Terminology
	Background and Terminology
	Control Statements
	Control Statements
	Control Statements
	Control Statements
	Control Statements
	Control Statements
	Control Statements
	Control Statements
	Control Statements
	Dangling else's
	Dangling else's
	Dangling else's
	Dangling else's
	Dangling else's
	Dangling else's
	Dangling else's
	Dangling else's
	Dangling else's
	Dangling else's
	Dangling else's
	Dangling else's
	Dangling else's
	Errors
	Errors - Semantic & Design
	Fixing Errors
	Reptition (loops)
	Reptition (loops)
	Reptition (loops)
	Reptition (loops)
	Exercise
	Exercise
	Exercise: class_average.html
	Exercise: class_average_functions.html
	Exercise: class_average_functions.html
	Exercise
	Exercise
	Exercise
	Exercise: bonus.html
	Assignment Operators
	Assignment Operators
	Increment and Decrement
	Increment and Decrement
	Increment and Decrement
	Increment and Decrement
	Increment and Decrement
	Additional Repetition Structures
	Additional Repetition Structures
	Example: sortedList.html

