
Javascript: Introduction to Scripting

Chapter 6: Javascript: Debugging

CS 80: Internet Programming

Instructor: Mark Edmonds

Developer Tools

• No program is perfect at first
• We need a way to examine program state as the program is running

– This will enable us to understand and fix problems in our code
• Debugging will help fix any error, but it’s particularly good for identifying edge cases youmay
have not considered when writing your program
– Common edge cases: empty string "", zero 0, negative numbers, etc

Developer Tools

• The debugger is present in any modern browser and has two main elements for javascript:
console and debugger

• Since we are editing the program as it executes, we need to remember where we are in
execution
– Variables may not exist yet

• How to write information to the console to inspect state:
– Use a console.log() statement in your javascript
– The value/text arguments will be printed to the Console section of the Developer Tools

Breakpoints

• Setting a breakpoint
– Breakpoints say "when you hit this line of code, pause the program for me"
– They allow you to inspect variable/program state during execution
– Enable a breakpoint by clicking the line number
– Important semantic note: The line of the breakpoint has not executed yet. It is about to
execute
* E.g. if we set a breakpoint on line 9, line 9 hasn’t executedwhen the breakpoint triggers
(line 8 has, however)

* Keep this in mind!

Mark Edmonds 1



Javascript: Introduction to Scripting

Breakpoints

• Stepping through a program
– Once we are at a breakpoint we have multiple options to control the program:

* Step Over: step over the current line of code. This means if we are at a function call, do
notmove the debugger into the function. Instead, the function will execute, and the
programwill pause a�er function completes

* Step Into: If the program is about to call a function, move the debugger into that
function and pause execution

* Step Out: Finish the current function call and pause execution at the calling function
* Continue: Continue the program’s execution; basically unpauses the program

Console Execution

• We can also call functions or inspect variables while paused using the console
– Move to the console, and type a javascript statement to execute

* Can also just type variable names to get their value
– If the javascript statement we called doesn’t have a return value (e.g. statement doesn’t
yield a value), then the console will report undefined.

Example

• Each browser has a slightly di�erent interface, but the developer tools work the same way for all
• Let’s examine the developer tools within Chrome, but this will mostly work the same for every
browser

• We’ll use leap_year_checker.html for the example

Opening Developer Tools

• First, open the HTML file you wish to debug. Here, we’ll open leap_year_checker.html in
chrome

• Open the Developer Tools and go to the “Sources” tab:

Mark Edmonds 2

../examples/ch6_js/leap_year_checker.html


Javascript: Introduction to Scripting

Opening Developer Tools

Figure 1: Launch of dev tools

Opening a file

• Next, we’ll press cmd+p (or ctrl+p) to open a file
• If your .html file does not appear, refresh the page and try again:

Mark Edmonds 3



Javascript: Introduction to Scripting

Opening a file

Figure 2: Loading HTML

Opening a file

• Now, we should see our file loaded
• You will need to enter into the prompt to see the file in the area below:

Mark Edmonds 4



Javascript: Introduction to Scripting

Opening a file

Figure 3: Loading HTML

Setting a breakpoint

• Next, we’ll set a breakpoint on line 10 by clicking on the line (the green marker indicates a
breakpoint):

Mark Edmonds 5



Javascript: Introduction to Scripting

Setting a breakpoint

Figure 4: Setting a breakpoint

Pausing at a breakpoint

• Refresh the page. Now the page should be paused, before the prompt appears
• Note that since we paused at line 10, line 10 is about to execute, but has not executed:

Mark Edmonds 6



Javascript: Introduction to Scripting

Pausing at a breakpoint

Figure 5: Pausing at a breakpoint

Stepping over

• Next, hit the Step Over icon (above the yellow “Debugger paused”; arrow hopping over a dot)
• The prompt will appear. Enter 99 and hit OK. We should now be paused at the next line:

Mark Edmonds 7



Javascript: Introduction to Scripting

Stepping over

Figure 6: Stepping over

Checking variables

• Click the arrow next to Global under Scope on the rightside panel.
• Scroll down until you see the variable “year”
• Notice this variable has the value 99, which is what we inputted into the prompt:
• We can check and verify variables as our program runs, so we can spot incorrect results as we
execute

Mark Edmonds 8



Javascript: Introduction to Scripting

Checking variables

Figure 7: Stepping over

Leap year example

• Continue to Step Over or press Continue (play button) until your program finishes.
• For this example, I would recommend inputting di�erent types of leap years (2000, 1996, 1975,
etc) to see how the control flow of your program changes with di�erent inputs.

Additional resources

• Here are a couple of external introductions that may also be useful:
• Chrome introduction: https://developers.google.com/web/tools/chrome-devtools/javascript
• Firefox introduction: https://developer.mozilla.org/en-US/docs/Tools/Debugger

Mark Edmonds 9

https://developers.google.com/web/tools/chrome-devtools/javascript
https://developer.mozilla.org/en-US/docs/Tools/Debugger

	Chapter 6: Javascript: Debugging
	Developer Tools
	Developer Tools
	Breakpoints
	Breakpoints
	Console Execution
	Example
	Opening Developer Tools
	Opening Developer Tools
	Opening a file
	Opening a file
	Opening a file
	Opening a file
	Setting a breakpoint
	Setting a breakpoint
	Pausing at a breakpoint
	Pausing at a breakpoint
	Stepping over
	Stepping over
	Checking variables
	Checking variables
	Leap year example
	Additional resources

