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Chapter 15: XML

CS 80: Internet Programming

Instructor: Mark Edmonds

XML describes data

• Remember the above!
• Stands for "Extensible Markup Language"

– XML is ameta-languagemeaning it is not a language itself, but rather a language for building
languages

XML describes data

• HTML is a sort of "variation" of XML, though it technically is not XML
– XHTML is a version of HTML that does adhere to actual XML rules
– So, we’ve seen something very similar before

XML describes data

• What’s the point?
– XML allows us to describe data in a strict, organized, but flexible manner
– This means we can create specific markup languages for any sort of data

* We’d need to parse the data for it to be meaningful, but XML is a building block

XML describes data

• Consider we have the following data:
– John 10 Bill 15 Judy 25

– What does this data mean?
* I have no idea from just the above
* If I put this on the internet, no one else will know what it means either

XML describes data

• XML allows us to share data e�iciently

• Consider the following
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1 <!-- XML representing a family - notice the explicit structure -->
2 <family>
3 <member>
4 <name>John</name>
5 <age>10</age>
6 </member>
7 <member>
8 <name>Bill</name>
9 <age>15</age>
10 </member>
11 <member>
12 <name>Judy</name>
13 <age>25</age>
14 </member>
15 </family>

XML describes data

• This data makes a lot more sense!
– The initial data had a lot of implicit information that we have made explicit through XML

XML Concepts

• Why care?
– XMLmakes data formats portable and application independent

* Which makes them a very good idea for the internet!
* Application independent means I don’t need the application using the data to under-
stand the data (contrast a format like Word document to a .txt)

XML Concepts

• Specify the document’s structure
• Consist of the element’s name in angle brackets
• Example: <data>

XML Concepts

• XML elements have start and end tags
– Start tag proceeds as above, e.g. <data>
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– End tag has a backslash (\ a�er the <, e.g. </data>
* End tags can be shorthanded in the starting tag by place a forward slash / before the
closing < of the opening tag. e.g. with <data/> as the start tag

– Looks familiar!

XML Concepts

• Every XML document contains one root element, which contains all other elements
– Similar to <html>

XML Concepts

• XML-basedmarkup languages are called XML vocabularies
– Provide a mechanism to describe data in a standardized, structured way.
– Examples: XHTML, MathML (math), VoiceXML (speech), XBRL (financial data)
– Why do XML vocabularies matter?

* Large companies o�en employ their own XML vocabulary to describe their data inter-
nally

* They provide a standard for data markup using a standard data format (e.g. if you
can read XML, a XML vocabulary will be easier to understand than a proprietary data
format)

XML Concepts

• XML documents have the extension .xml and are readable by any text editor
• XML is just a data format; it does not contain styling

– Devices are responsible for how a XML is rendered
– However, Extensible Stylesheet Language allows you specify rendering on di�erent plat-
forms

XML Parsing

• Because we are specifying a data markup, we need a way to understand the format
• XML parsers read XML

– Now that we have covered DOM, think about what your browser does to load a .html file
into the DOM tree (it has to parse it!)
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XML Parsing

• Basic XML Rules:
1. Single root element
2. A start and end tag for each element
3. Properly nested tags
4. Case sensitive
– Following these rules means the document iswell-formed

XML Parsing

• Basic XML Rules:
1. Single root element
2. A start and end tag for each element
3. Properly nested tags
4. Case sensitive

• Which of these rules does HTML break?
– 2 and 4

XML Validation

• Some parsers can also validate the XML’s adhere to a particular markup
• Relies on a Document Type Definition (DTD) or a Schema

– These documents describe the proper document structure
– Think of these like a grammar for what forms a valid XML document using this data markup

XML Validation

• A validating parser reads the XML andmakes sure that it follows the structure defined in the DTD
or Schema
– If the document is well-formed XML and adheres to the DTD/Schema, then it is valid
– Otherwise, the document is invalid
– Note that a document may be well-formed XML but may not be a valid document

Example: article.xml

1 <?xml version="1.0"?>
2 <!-- Fig. 15.2: article.xml -->
3 <!-- Article structured with XML -->
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4 <article>
5 <title>Simple XML</title>
6 <date>July 4, 2007</date>
7 <author>
8 <firstName>John</firstName>
9 <lastName>Doe</lastName>
10 </author>
11 <summary>XML is pretty easy.</summary>
12 <content>This chapter presents examples that use XML.</content>
13 </article>

Writing XML

• The first line, <?xml version="1.0"?> declares the document as a XML document
– Similar to <!DOCTYPE HTML>

– NO characters must be before the XML declaration
• XML Comments are identical to HTML comments
• The first XML element is the root node; it’s closing tag should be the last tag in the document

Writing XML

• XML Element Names
– Can contain letters, digits, underscores, hyphens, and periods.
– Must start with an underscore or letter
– Must not begin with any case-combination of "xml" as these are reserved for XML

• Nesting XML elements is identical to nesting HTML elements
– Must still be careful about proper nesting

XML Namespaces

• Suppose we want to use the use "subject" in multiple ways: one for subjects in high school, the
other for subjects in medical schools

1 <subject>Geometry</subject>
2 <subject>Radiology</subject>

• We have an ambiguity in our data format as we probably don’t want to mix high school and
medical school subjects!

– So we need a way to add additional categorical/hierarchical information
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XML Namespaces

• Namespaces allow us to give more specific scope to an XML element

– The namespace itself is called a namespace prefix and is followed by a colon (:) before
the XML element name

• For our example

1 <highschool:subject>Geometry</highschool:subject>
2 <medicalschool:subject>Radiology</medicalschool:subject>

XML Namespaces

• The xmlns defines a namespace
– Syntax xmlns:prefix="URI"
– URI can be anything, it is just supposed to be a uniform resource identifier
– Can be Uniform Resource Name (URN) or Uniform Resource Locator (URL)

* URN’s are a series of names separated with colons
· E.g. urn:schooltypes

– No namespace prefix should begin with xml (it is reserved)

Example: namespaces.xml

1 <?xml version="1.0"?>
2 <!-- Fig. 15.5: namespace.xml -->
3 <!-- Demonstrating namespaces -->
4 <text:directory xmlns:text="urn:deitel:textInfo" xmlns:image="urn:

deitel:imageInfo">
5 <text:file filename="book.xml">
6 <text:description>A book list</text:description>
7 </text:file>
8 <image:file filename="funny.jpg">
9 <image:description>A funny picture</image:description>
10 <image:size width="200" height="100" />
11 </image:file>
12 </text:directory>

Default Namespaces

• Specifying xmlns = "URI" specifies a default namespace for the entire document
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Example: default_namespaces.xml

1 <?xml version="1.0"?>
2 <!-- Fig. 15.6: defaultnamespace.xml -->
3 <!-- Using default namespaces -->
4 <directory xmlns="urn:deitel:textInfo" xmlns:image="urn:deitel:

imageInfo">
5 <file filename="book.xml">
6 <description>A book list</description>
7 </file>
8 <image:file filename="funny.jpg">
9 <image:description>A funny picture</image:description>
10 <image:size width="200" height="100" />
11 </image:file>
12 </directory>

Default Namespaces

• Notice the di�erence between the two versions
– They have the same semantic meaning, but one contains significantly less manual tagging
of elements!

– Use a default namespace if want every element to be in a namespace andhave a namespace
that is particularly common

DTD

• A method for defining a grammar for validating XML
• Reasonably simple to follow, but it’s an aging implementation. Schema is more powerful and
more intuitive once you know XML

• Follows Extended Backus-Naur Form (EBNF) grammar

DTD

• Follows Extended Backus-Naur Form (EBNF) grammar
– Basically a list of production rules for what makes up a valid document
– E.g. a sentence is a SUBJECT followed by a PREDICATE, but also has many optional argu-
ments

– A context-free grammar (CGF) to recursively write rules to generate patterns
* Technically, English is not a context-free grammar
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* For more about CFG’s look into Alan Turing and Noam Chomsky’s work, a branch of
computer science called Automata Theory!

XML Schema

• Allows us to validate an XML document
– Why do we need to specify this?

* XML is ameta-language, so there’s nothing to validate by default. We define a language
to validate, so wemust define the validation as well
· Think if you were writing your own programming language; you’d have to write a
"syntax validator" to validate that a program contained valid syntax

XML Schema

• Used by validating parsers to validate documents
• Documents that conform the to schema are valid, documents that do not conform to the schema
are invalid

• Schema documents have the extension .xsd
– Can validate schema at www.xmlforasp.net/SchemaValidator.aspx

• Let’s start with an example

Example: book.xml

1 <?xml version="1.0"?>
2 <!-- Fig. 15.9: book.xml -->
3 <!-- Book list marked up as XML -->
4 <deitel:books xmlns:deitel="http://www.deitel.com/booklist">
5 <book>
6 <title>Visual Basic 2010 How to Program</title>
7 </book>
8 <book>
9 <title>Visual C# 2010 How to Program, 4/e</title>
10 </book>
11 <book>
12 <title>Java How to Program, 9/e</title>
13 </book>
14 <book>
15 <title>C++ How to Program, 8/e</title>
16 </book>
17 <book>
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18 <title>Internet and World Wide Web How to Program, 5/e</title>
19 </book>
20 </deitel:books>

Example: book.xsd

1 <?xml version = "1.0"?>
2 <!-- Fig. 15.10: book.xsd
3 -->
4 <!-- Simple W3C XML Schema document -->
5 <!--
6 The first xmlns defines the namespace for this document, which is a

schema.
7 xmlns:deitel defines a namespace of "dietel", used to differentiate

between names used for the XML schema and names used by our schema
8 targetNamespace defines which namespace will use this schema for

validation
9 -->
10 <schema xmlns = "http://www.w3.org/2001/XMLSchema"
11 xmlns:deitel = "http://www.deitel.com/booklist"
12 targetNamespace = "http://www.deitel.com/booklist">
13 <!-- declaring an element named "books" and its schema type, "

BooksType" in the "dietel" namespace -->
14 <element name = "books" type = "deitel:BooksType"/>
15 <!-- declare the complext type "BooksType" used with the "books"

element -->
16 <complexType name = "BooksType">
17 <!-- sequence specifies the order in which child elements must

appear -->
18 <sequence>
19 <!-- declare an element names "book" of type "SingleBookType"

that must occur at least once and can occur an infinite amount
of times -->

20 <element name = "book" type = "deitel:SingleBookType"
21 minOccurs = "1" maxOccurs = "unbounded"/>
22 </sequence>
23 </complexType>
24 <!-- declare the "SingleBookType" complex type used with the "book"

element -->
25 <complexType name = "SingleBookType">
26 <sequence>
27 <!-- specify that the "title" element is a string -->
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28 <element name = "title" type = "string"/>
29 </sequence>
30 </complexType>
31 </schema>

XML Schema

• In the schema, we have two namespaces
– One for the schema itself, xmlns, which can be used to validate the schema
– The second, xmlns:deitel, which is used to define names created by us

• Our targetNamespace is the URI of the XML vocabulary that this schema defines

Schema Attributes

• Name corresponds to the element’s name and type specifies the element’s type
• Types:

– XML has predefined types, or you can create user-defined types

Schema Attributes

• There are two categories of types:
1. Simple types: a basic type. Cannot contain attributes or child elements
2. Complex types: a complex type. Can contain attributes or child elements
– Complex typesmay have simple content or complex content. Both can contain attributes,
but only complex content contain child elements. Simple content must extend or restrict a
base user or XML type
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XML Types

Figure 1: XML Types
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XML Types

Figure 2: XML Types

Example: laptop.xml

1 <?xml version="1.0"?>
2 <!-- Fig. 15.13: laptop.xml
3 -->
4 <!-- Laptop components marked up as XML -->
5 <!-- declare a laptop computer with manufacturer "IBM" -->
6 <computer:laptop xmlns:computer="http://www.deitel.com/computer"

manufacturer="IBM">
7 <processor model="Centrino">Intel</processor>
8 <monitor>17</monitor>
9 <CPUSpeed>2.4</CPUSpeed>
10 <RAM>256</RAM>
11 </computer:laptop>
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Example: laptop.xsd

1 <?xml version = "1.0"?>
2 <!-- Fig. 15.12: computer.xsd -->
3 <!-- W3C XML Schema document
4 -->
5 <schema xmlns = "http://www.w3.org/2001/XMLSchema"
6 xmlns:computer = "http://www.deitel.com/computer"
7 targetNamespace = "http://www.deitel.com/computer">
8 <!-- declare a simple type of "gigahertz"-->
9 <simpleType name = "gigahertz">
10 <!-- sepcify a restriction on the base type decimal -->
11 <restriction base = "decimal">
12 <!-- set minimum value -->
13 <minInclusive value = "2.1"/>
14 </restriction>
15 </simpleType>
16 <!-- declare a complex type of CPU -->
17 <complexType name = "CPU">
18 <!-- create simple content -->
19 <simpleContent>
20 <!-- here we "extend" the simple content to contain a string -->
21 <extension base = "string">
22 <!-- set the name and the type of CPU -->
23 <attribute name = "model" type = "string"/>
24 </extension>
25 </simpleContent>
26 </complexType>
27 <!-- declare a complex type "portable" -->
28 <complexType name = "portable">
29 <!-- All specifies that each child element must be included -->
30 <all>
31 <!-- declare elements and their type -->
32 <element name = "processor" type = "computer:CPU"/>
33 <element name = "monitor" type = "int"/>
34 <element name = "CPUSpeed" type = "computer:gigahertz"/>
35 <element name = "RAM" type = "int"/>
36 </all>
37 <!-- declare an attribute for the manufacturer of the laptop -->
38 <attribute name = "manufacturer" type = "string"/>
39 </complexType>
40 <!-- declare a single laptop element -->
41 <element name = "laptop" type = "computer:portable"/>
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42 </schema>
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