
Strings & Vectors

Chapter 8: Strings & Vectors

Instructor: Mark Edmonds

edmonds_mark@smc.edu

CStrings vs. string

• Below, we’ll outline how you would directly store a string as an array of characters
• However, in general, it’s much easier to use the string class tomanipulate text data, as we have
already been doing.

• This chapter is important for your understanding of C++ (and C), but I would recommend sticking
to using the string class unless you have a good reason to use CStrings in C++

CStrings

• So far, we’ve dealt only with string literals such as “Hello, World!”, but what if we want to store
strings as variables?

• We’ll use what’s called a C-style string to do this

CStrings are arrays

• Just any array!
• We can write an array of characters to form a string:

1 char arr[] = {'H', 'e', 'l', 'l', 'o', ' ', 'W', 'o', 'r', 'l', 'd', '!
'};

• But this is is not a C-string
– This is an array of characters, but not a C-style string.

• Well what is a C-string?
– A character array whose final character is the null character \0:

• To write “Hello World!” as a C-string:

1 char arr[] = {'H', 'e', 'l', 'l', 'o', ' ', 'W', 'o', 'r', 'l', 'd', '!
', '\0'};

• But this is incredibly tedious to define strings this way
• Fortunately, we can assign a character array to string literal to create a C-string

Mark Edmonds 1

mailto:edmonds_mark@smc.edu

Strings & Vectors

1 char arr[] = "Hello, World!"; // arr will terminate with a null
character.

2 // Null character is automatically added
by the compiler

• Another example:

1 char t[5] = "HI";

Figure 1: IMAGE

• When we initialize a character using a string literal, the null character is automatically added
– This means the character array must have enough space for every character of the string
plus an additional element for the null character.
* For instance, if we do the following, we don’t end up with a C-string (there’s no room
for the entire string (and therefore there isn’t room for the null character either)

1 char arr[5] = "Hello, World!"; // arr only stores the first 5 chracters
2 // arr has the values [H', 'e', 'l', 'l

', 'o']

• But we also don’t have to fill up the entire array either, the null-character indicates the end of
the string.

• Bottom line: a character array is only a character array if it is null-terminated, meaning the final
character is the null-character

• Why does any of this matter?
– Strings are an incredibly common data type in real-world data.
– Storing names, addresses, email addresses, etc all required strings.
– There is a very large standard library header, called <cstring>, that provides a wide range
of functionality for CStrings.

Mark Edmonds 2

Strings & Vectors

* All of this functionality relies on using CStrings, not character arrays.

String Library

• Large library available for us to use to copy, compare, andmanipulate strings.
• This is intended to help you, so you should view this as free functionality (as long as you are
willing to read a tiny bit to figure out what the library functions do)

• Include the library with:

1 #include <cstring>

• The following table summarizes the CString library

Function Meaning Argument types Return type

strcpy(dest, src) dest = src cstring, cstring void

strcat(dest, src) dest = dest + src cstring, cstring void

strlen(src) length of cstring src cstring int

strcmp(s1, s2) compares s1 and s2 cstring, cstring int

Converting strings to other data types

• A bunch of functions to do this for you (included in <cstdlib>):
– atoi: string to int
– atof: string to float
– atol: string to long
– strtod: string to double
– There are somemore rare conversions provided by <cstdlib> as well

Example: CStrings.cpp

1 #include <iostream>
2 #include <string>
3
4 using namespace std;
5
6 // Note the bizzarro way that CStrings are passed to functions

Mark Edmonds 3

../examples/ch8_strings_vectors/CstringsDriver.cpp

Strings & Vectors

7 void dump(char song1[], char song2[], char song3[], char song4[], char
song5[], char song6[] = "\n");

8 void sort(char song1[], char song2[], char song3[], char song4[], char
song5[], char song6[] = "\n");

9
10
11 int main() {
12 // Let's play with strings
13 char ManilowTitle1[6] = "Mandy";
14 char ManilowTitle2[] = "Could It Be Magic";
15 char ManilowTitle3[] = {'E', 'v', 'e', 'n', ' ', 'N', 'o', 'w',

'\0'};
16
17 char ManilowTitle4[9];
18 strcpy(ManilowTitle4, "Daybreak");
19
20 char ManilowTitle5[16];
21 strcpy(ManilowTitle5, "It's");
22 strcat(ManilowTitle5, " A ");
23 strcat(ManilowTitle5, " Miracle");
24
25 cout << "Here is your Barry Manilow songlist" << endl;
26 cout << "\t" << ManilowTitle1 << endl;
27 cout << "\t" << ManilowTitle2 << endl;
28 cout << "\t" << ManilowTitle3 << endl;
29 cout << "\t" << ManilowTitle4 << endl;
30 cout << "\t" << ManilowTitle5 << endl;
31
32 // We can do this with a function call
33 cout << "Here is your Barry Manilow songlist" << endl;
34 dump(ManilowTitle1, ManilowTitle2, ManilowTitle3, ManilowTitle4,

ManilowTitle5);
35
36 cout << "Here is your sorted songlist" << endl;
37 sort(ManilowTitle1, ManilowTitle2, ManilowTitle3, ManilowTitle4,

ManilowTitle5);
38
39 // Let's prompt for another song
40 char ManilowTitle6[80];
41 cout << "Here's your chance to add to the songlist!" << endl;
42 cin.getline(ManilowTitle6, 80);
43
44 cout << "Here is your Barry Manilow songlist" << endl;

Mark Edmonds 4

Strings & Vectors

45 dump(ManilowTitle1, ManilowTitle2, ManilowTitle3, ManilowTitle4,
ManilowTitle5, ManilowTitle6);

46
47 cout << "Here is your sorted songlist" << endl;
48 sort(ManilowTitle1, ManilowTitle2, ManilowTitle3, ManilowTitle4,

ManilowTitle5, ManilowTitle6);
49
50 return(0);
51 }
52
53 void dump(char song1[], char song2[], char song3[], char song4[], char

song5[], char song6[]) {
54 cout << "\t" << song1 << endl;
55 cout << "\t" << song2 << endl;
56 cout << "\t" << song3 << endl;
57 cout << "\t" << song4 << endl;
58 cout << "\t" << song5 << endl;
59 if (strcmp(song6, "\n") != 0)
60 cout << "\t" << song6 << endl;
61 }
62
63 void sort(char song1[], char song2[], char song3[], char song4[], char

song5[], char song6[]) {
64 // This is very wasteful, but CS52 knows no other way
65 char songArray[6][30];
66 bool sentSix = false;
67 int total = 5;
68 strcpy(songArray[0], song1);
69 strcpy(songArray[1], song2);
70 strcpy(songArray[2], song3);
71 strcpy(songArray[3], song4);
72 strcpy(songArray[4], song5);
73
74 if (strcmp(song6, "\n") != 0) {
75 strcpy(songArray[5], song6);
76 sentSix = true;
77 }
78 if (sentSix)
79 total = 6;
80
81 // sort the array
82 for (int i = 0; i < total; i++) {
83 for (int j = i; j < total; j++) {

Mark Edmonds 5

Strings & Vectors

84 if (strcmp(songArray[j], songArray[i]) < 0) {
85 char temp[30];
86 strcpy(temp, songArray[j]);
87 strcpy(songArray[j], songArray[i]);
88 strcpy(songArray[i], temp);
89 }
90 }
91 }
92
93 for (int k = 0; k < total; k++)
94 cout << "\t" << songArray[k] << endl;
95 }

Stream input

• By default, when we use the stream insertion operator >>, it will eat whitespace (meaning any
whitespace in the input won’t be received by our programs)

• But whitespace can bemeaningful in strings
• To read character data, we can use the getline function
• The getline function has the following signature

1 istream::getline(char s[], int i)

• This function reads up to i-1 characters into s and will stop at a newline

1 const int LINESIZE=80;
2 char line1[LINESIZE];
3 char line2[LINESIZE];
4
5 cin.getline(line1, LINESIZE);
6 cin.getline(line2, LINESIZE);

Summarizing CStrings

• CStrings are not as nice to work with as strings
• At least you can always use loops to process character data, and look for the null-character \0 to
terminate the string

Mark Edmonds 6

Strings & Vectors

string class

• With C++, we have a much easier way to work with strings, as we have been
• The string class is provided by the <string> library
• The class allows for:

– Concatentation using the + operator
– Default and string argument constructor (can construct an empty string or initialize with a
string literal)

– Character access using the [] operator (indexing like an array)
– <<and>>havebeenoverloadedas youwouldexpect (similar tohowcoutandcinoperate)
– All boolean operators work as you would expect

1 #include <string>
2
3 using namespace std;
4
5 int main() {
6 string name, dog("dog"), hotdog;
7 cin >> name;
8 hotdog = "hot " + dog;
9
10 for (int i=0; i < name.length(); ++i) {
11 cout << name[i] << " ";
12 }
13 }

getline for string objects

• getline() for string objects is a normal function, not a member of istream

1 string& getline(istream& input, string& str, char delimiter = '\n');

stringmember functions

Function Meaning
Argument
types Return type

substring(pos, len) substring starting at pos for length len int, int string

empty() tests whether or not the string is empty int, string boolean

Mark Edmonds 7

Strings & Vectors

Function Meaning
Argument
types Return type

insert(pos, str) inserts str at pos int, string void

remove(pos, len) remove starting at pos for length len int, int void

find(str) find first occurrence of str in instance string int

Example: strings.cpp

1 #include <iostream>
2 #include <cstdlib>
3 #include <cctype>
4 #include <string>
5
6 using namespace std;
7
8 void analyze(string s);
9 void peek(string s);
10
11 int main() {
12 // Let's play with string variables
13 // They are *so* much nicer than char *
14 string s;
15
16 cout << "Gimme a line of data to read" << endl;
17 getline(cin, s);
18 analyze(s);
19
20 return(0);
21 }
22
23 void analyze(string s) {
24 int i = 0;
25
26 while (i < s.length()) {
27 int locationOfSpace = s.find_first_of(" ", i + 1);
28 if (i == 0)
29 peek(s.substr(i, locationOfSpace - i));
30 else
31 peek(s.substr(i + 1, locationOfSpace - i));
32 i = locationOfSpace;

Mark Edmonds 8

../examples/ch8_strings_vectors/StringDriver.cpp

Strings & Vectors

33 }
34 }
35
36 void peek(string s) {
37 bool isNumber = true;
38 bool isAlpha = true;
39 bool isUCase = true;
40 bool isLCase = true;
41 cout << s << "\t----> ";
42 for (int i = 1; i < s.length(); i++) {
43 if (isdigit(s.at(i)) || s.at(i) == '.') {
44 isNumber = (isNumber && true);
45 isAlpha = false;
46 isLCase = false;
47 isUCase = false;
48 }
49 else if (isalpha(s.at(i))) {
50 isNumber = false;
51 isAlpha = (isAlpha && true);
52 if (isupper(s.at(i))) {
53 isUCase = (isUCase && true);
54 isLCase = false;
55 }
56 if (islower(s.at(i))) {
57 isLCase = (isLCase && true);
58 isUCase = false;
59 }
60 }
61 }
62 if (isAlpha) {
63 cout << "looks ";
64 if (isLCase)
65 cout << "lowercase ";
66 else if (isUCase)
67 cout << "uppercase ";
68 else
69 cout << "mixed case ";
70 cout << "alphanumeric" << endl;
71 }
72 else if (isNumber) {
73 cout << "looks numeric" << endl;
74 }
75 else {

Mark Edmonds 9

Strings & Vectors

76 cout << " i can't make heads or tails of it!" << endl;
77 }
78 }

Vectors

• Vectors are similar to arrays, but their size can change size as your program runs.
• Much like how the string class is easier to use than CStrings, the vector class is much easier
to use than native C++ arrays

• The vector class is included in the <vector>
• Vectors have a base type
• To declare a vector with the base type int, we would write:

1 vector<int> v; // creates a vector that can store ints

• Here, <int> identifies the template class
• You can use any base type in a template class

1 vector<string> v; // creates a vector that can store strings

• Similar to arrays and strings, vectors are indexed starting at 0, and we use [] to read or change
values of a item:

1 v[i] = 42;
2 cout << v[i];

• But we can’t use [] to initialize a new element (i.e. grow the vector)

Initializing vector elements

• We can use the member funciton push_back() to add an element to a vector:

1 vector<double> v;
2 v.push_back(0.0); // v contains [0.0]
3 v.push_back(1.1); // v contains [0.0, 1.1]
4 v.push_back(2.2); // v contains [0.0, 1.1, 2.2]

• We can also initialize multiple vector elements at a time:

1 vector<int> v(10); // allocates a vector with 10 default-initialized
integers

Mark Edmonds 10

Strings & Vectors

• With this initialization, we can use [] to assign values to elements 0-9, and push_back will
generate a new element in position 10

size of a vector

• With native arrays, we always had to keep track of how big our array was with a separate variable
(e.g. arr_len)

• The vector class comeswith a built-inmember function size to return the number of elements
in a vector

• To print every element of a vector, wemight use:

1 for (unsigned int i = 0; i < v.size(); i++){
2 cout << v[i] << endl;
3 }

• We used an unsigned int instead of an int because:
1. unsigned ints are nonnegative integers
2. the size() function returns an unsigned int, so the compiler may issue a warning if
the types don’t match

Mark Edmonds 11

	Chapter 8: Strings & Vectors
	CStrings vs. string
	CStrings
	CStrings are arrays
	String Library
	Converting strings to other data types

	Example: CStrings.cpp
	Stream input
	Summarizing CStrings
	string class
	getline for string objects
	string member functions
	Example: strings.cpp
	Vectors
	Initializing vector elements
	size of a vector

