Arrays

Chapter 7: Arrays

Instructor: Mark Edmonds

edmonds_mark@smc.edu

Arrays

« Arrays enabling storing multiple values under a single variable
« Lists are intuitive to humans, and arrays let us mimic a list of items
- One note: in C++, all lists must have the same type.

If multiple values are stored in a single variable, we need a way to access each value

We access values stored in an array using indices, called subscripts

Values inside of an array are homogeneous, meaning they all have the same type
- Can’t mix ints with floats or vice-versa

Later we will introduce the idea of a pointer, which extend the use of arrays

Declaration and Initialization
+ C++ arrays are declared in the following form
type name[number of elements];
« type specifies the type of every element in the array (since arrays are homogeneous, we only
specify one type)
« name is the identifier/variable name we will use to refer to the array

« number of elements isthe number of type elements that the array can store
« To declare an array of 6 integers called numbers we would use:

int numbers[6];

 To declare an array of 6 characters called letters we would use:

char letters[6];

+ We can initialize the array when we declare it using curly braces and initialization values using
an initializer list:

int point[6] = {0,3,1,6,7,2};

« Or we can only initialize the first few elements (this initializes the first 3):

Mark Edmonds 1

mailto:edmonds_mark@smc.edu

Arrays

int parital[6] = {1,2};

« We can also omit the size of the array and use the size of the initializer as the size of the array
(this will have space for 6 integers):

int point[] = {0,3,1,6,7,2};

Arraysize=5

-
A J

Indices — 0 1 Z 3 |

Figure 1: C++ Array

Array Access

« Now we know how to declare and initialize and array, but how do we access elements in an
array?

« We’ll use an index or subscript to specify which element of the array we want to access

+ Arrays are 0O-indexed in C, meaning the index of the first element in the array is 0, the second
elementin the array is 1, the third is 2, and so forth.

- Important note: the last valid index in an array is the size-1. For instance, in an array of
length 6 (an array that can store 6 elements), the last valid index is 5. 0-5 is 6 numbers.
« Example:

int point[6] {0,3,1,6,7,2};
int thirdEle = point[2]; // arrays are 0-indexed in C, so thirdEle will
have the value of 1

+ What happens if you access an array with an index is out of the bounds of the array (i.e. use 6 as
anindex to the point array?
- It depends. Sometimes the compiler can catch the error, but it’s not guaranteed to.

Mark Edmonds 2

Arrays

- If your program executes, it will be in undefined behavior (UB), which means the rest of your
program’s output is rendered meaningless and unpredicable, even if it outputs the correct
thing

* Undefined behavior is a large and somewhat esoteric definition, but the point is that
C++ makes zero guarantee about what will happen after you’ve triggered undefined
behavior.
« Examples:

char y;

int z = 9;

char point[6] = { 1, 2, 3, 4, 5, 6 };

//examples of accessing outside the array. A compile error is not
always raised

y = point[15];
y = point[-4];
y = point[z];

+ Your program may continue running normally after these cases, but you have entered UB. This
must be avoided at all costs!
+ Butthere’s got to be a better way to make sure we stay within the bounds....
- Well not for every case, but for any type of loop, we can use sizeof () to as the limit on
the number of iterations the loop executes
- Here’s an example:
int i
int arr[] = {3, 6, 9, 12, 15};

cout << "sizeof(arr): " << sizeof(arr) << endl;
cout << "sdzeof(int): " << sizeof(int) << endl;

int arr_len = sizeof(arr) / sizeof(int);
cout << "array is length " << arr_len << endl;
for (i = 0; i < arr_len; ++1)

{

cout << Marr[" << G << "]: " << arr[i] << endl;

+ Thisis a great way to ensure you stay within the bounds of the array!

Mark Edmonds 3

Arrays

Array size

+ Note that for native C++ arrays, the array size is fixed after you declare the size.
- Itis not possible to make an array of length 6 and extend it to size 10, or shrink it to size 3
(or any size change)
- We typically get around this by allocating more memory than we need, and use a variable
to keep track of how much of the array is actually used.
« Array sizes cannot be changed, but later we learn about the vector class that allows resizing.
- The vector class is part of the Standard Library, so it is not a functionality of the C++
language itself.

Passing arrays to functions

« To pass an array to a function, we’ll pass the name of the variable of the array.
+ However, in the function signature, we must tell the compiler we are passing an array:

#include <jostream>

// [] after the variable name indicates the variable is an array
float average(float age[]);

int main()

{
float avg
float age[] = { 23.4, 55, 22.6, 3, 40.5, 18 };
int arr_len = sizeof(arr) / sizeof(float);
avg = average(age, age_len); /* Only name of array is passed as
argument. x/
cout << "Average age=" << avg << endl;
return 0;
}

// [] after the variable name -indicates the variable is an array
float average(float age[], size_t age_len)
{
int 1;
float avg, sum = 0.0;
for (i = 0; i < age_len; ++i) {
sum += age[i];

Mark Edmonds 4

Arrays

avg = (sum / 6);
return avg;

Returning arrays from functions

« We’ll have to introduce a symbol we will talk in greater detail about when we discuss pointers
and passing-by-reference. We need to cover this for the homework assignment, but the concept
will be covered later.

« We'll use the pointer type-qualifer x as a part of the return type to indicate we wish to return an
array.

« Inside of the function, we’ll return the symbol of the array without accessing an element using
anindex

« Example:

//NOTICE: the asterisk (star) next to int indicates we are returning an
array
intx add_to_zeroth_element(int arr[], size_t arr_len, int value){
// this ds just a dummy array operation, in practice you'll do
wonderful and amazing things here
arr[0] += value;
// NOTICE: return the array, we don't use [] here, just the name of
the array.
return arr;

int main(){
int arr[] = {1,2,3};
// notice the type here has to match the return type of the function.
Exactly what's going on here will be covered with pointers.
intx result = add_to_zeroth_element(arr, 3, 5);

+ Note that we aren’t required to return the array. Since the array is effectively passed-by-reference,
any changes we make to arrin add_to_zeroth_element () will persistinthe arrinmain()

Example: fill_array_with_input.cpp

// Arrayl.cpp : Defines the entry point for the console application.
//

Mark Edmonds 5

../examples/ch7_arrays/1-Arrays/fill_array_with_input.cpp

Arrays

#include <iostream>
#include <cstdlib>
#include <fstream>
#include <cctype>
#include <string>

using namespace std;
void fillarraywithinput(int array[], const 1int& size);

int main(int argc, charx argv[])

{
int size = 1024;
int dataarray[1024];
int i;
// read from cin
fillarraywithinput(dataarray, size);
// sort
for (i = 0; 1 < size; i++)
for (int j = 0; j < size; j++)
if (dataarray[i] < dataarray[j]) {
int temp = dataarray[i 1;
dataarray[i] = dataarray[j 1;
dataarray[j] = temp;
}
// print out
for (i = 0; i < size; i++) {
cout << dataarray[i] << " "3
}
cout << endl;
return 0;
}

void fillarraywithinput(int array[], const int& size) {
string data;
int k = 0;
int startcntr = 0, endcntr = 03
cout << "Enter one line of data to sort" << endl;

Mark Edmonds

Arrays

getline(cin, data);
data += " "; // in case string does not end with whitespace
for (endcntr = 0; endcntr < data.length(); ++endcntr) {
if (isspace(data.at(endcntr)) && startcntr <= endcntr) {
string bit = data.substr(startcntr, endcntr - startcntr +
1);
if (isspace(bit.at(®))) {
startcntr = endcntr + 1;
continue;

}

int value = atoi(bit.c_str());
array[k++] = value;

startcntr = endcntr + 1;

size = k;

Multi-dimensional arrays

« Muti-dimensional arrays are arrays-of-arrays.

+ The most basic multi-dimensional is a 2-dimensional array, which creates a rectangular array.
Each row has the same number of columns.

+ To get an int array with 3 rows and 5 columns, we write:

int arr[3][5];

« To access/modify a value in the array, we need two subscripts: one for the row we wish to access,
and a second for the column we wish to access:

arr[1][3] = 5; // sets the element in the second row and forth column
to 5

+ We can also initialize a multi-dimensional array in a similar fashion as a single-dimension array
using an initializer list:

int two_d[2][3] = {{ 5, 2, 1},
{6, 7, 8 }};

)

« The amount of columns must be explicitly specified, but the compiler will sort out how many
rows are needed based on the initializer list. We could have written

Mark Edmonds 7

Arrays

int two _d[][3] = {

Passing multi-dimensional arrays to functions

«+ Exactly the same as passing single-dimension, except we must specify the number of columns

- Can also specify both rows and columns if you only want a

#include <iostream>
void print_arr(int num[][2]);

int main()

{
const int nr=2, nc=2;
int num[nr][nc], i, j;
for (i = 0; i < nrj i++)

{
for (j = 0; j < nc; j++)
{
cout << "element - [" << i << "J[" << j << "]:
cin >> num[i][j];
}
}

// passing multi-dimensional array to function
print_arr(num, nr);

return 0O;

void print_arr(int num[][2], size_t num_len)
{

int i, j;

for (i = 0; i < num_len; ++1)

{
for (j = 05 j < 25 ++])
{
cout << num[i][j] << ™ "3
}
cout << endl;
}
Mark Edmonds 8

Arrays

| 34 }

Returning multi-dimensional arrays from functions

« This is a bit trickier and we will cover this when we cover pointers

a[0][0] a[0][1] al0]IlZ] al0][3]

a[1][0] a[l][1] al[l][2] =1 06 1) (e 4|

al2] [0] al2][1] al2][2] al2][3]

Figure 2: Multi-dimensional arrays

Exercises

1. Write a program in C++ to store 10 elements inputted by the user and write a function to print the
contents of the array.

#include <iostream>
using namespace std;

int main()

{
int arr[10];
int 1;

0 N o U1 A WIN =

Mark Edmonds 9

Arrays

cout << "\n\nRead and Print elements of an array:\n";
cout << "-m7-r— \n";

cout << "Input 10 elements in the array :\n";
for (i=0; i<10; 1i++)
{

cout << "element - " << J << " My

cin >> arr[i];

cout << "\nElements in array are: ";
for(i=0; i<10; qi++)

{

cout << arr[i] << " '
}
cout << endl;

2. Write a program in C++ to prompt for the number of elements the user wishes to input (n <100)
and then prompt for the user to input each element. Then print all unique elements in an array.

#include <iostream>
using namespace std;

int main()

{
int arrl[100], n, count_ele = 0;
int i, j, k;

cout << "Input the number of elements to be stored in the array (must
be less than 100):";
cin >> n;

cout << "Input " << n <<" elements 1in the array:\n";
for (i = 05 1 < nj i++)
{

cout << "element - " << G << "M My

cin >> arrlf[i];

/*Checking duplicate elements in the array =/
cout << "\nThe unique elements found in the array are: \n";

Mark Edmonds 10

Arrays

for (i = 0; 1 < n; i++)
{

count_ele = 0;

/*Check duplicate before the current position and
increase counter by 1 if found.x/
for (j =1 - 1; j >= 0; j--)
{
/*Increment the counter when the search value is duplicate.x/
if (arrl[i] == arril[j])
{

count_ele++;

}

/*Check duplicate after the current position and increase counter
by 1 if found.x/
for (k = i + 1; k < n; kt++)
{
/*Increment the counter when the search value is duplicate.x/
if (arrl[i] == arrl[k])
{

count_ele++;

}

/*Print the value of the current position of the array as unique
value

when counter remain contains 1its initial value (zero).x/

if (count_ele == 0)

{

cout << arrlf[i] << "™ 'y

}

cout << "\n\n";

3. Write a program in C++ to store a 2x2 2-dimensional array. Elements are inputted by the user.
Print the matrix and find the sum of rows an columns of the matrix.

#include <jostream>
#include <iomanip>

using namespace std;

Mark Edmonds n

Arrays

int main()

{

const int n = 2;
int arril[n][n], rsum[n], csum[n];

cout << "Input elements in the 2x2 matrix:\n";
for (int i = 0; i < nj; i++)

{
for (int j = 0; j < n; j++)
{
cout << "element - [" << G << "J[" << j << "] "y
cin >> arrl[i][j];
}
}

cout << "The matrix is:\n";
for (int i = 0; i < n; i++)

{
for (int j = 0; j < nj; j++)
cout << std::setfill('0') << std::setw(4) << arrl[i][j] << " ";
cout << endl;
}

/* Sum of rows x/
for (int i = 0; i < n; i++)

{
rsum[i] = 0;
for (int j = 0; j < nj; j++)
rsum[i] = rsum[i] + arrl[i][]j];
}

/* Sum of Column */
for (int i = 0; i < nj; i++)

{
csum[i] = 0;
for (int j = 0; j < nj; j++)
csum[i] = csum[i] + arrl[j]1[i];
}

cout << "The sum of the rows the matrix is:\n";
for (int i = 0; i < n; i++)

{

cout << std::setfill('0') << std::setw(4) << rsum[i] << " " << endl

.
)

Mark Edmonds

12

Arrays

}
cout << endl << "The sum of the cols the matrix is: " << endl;
for (int j = 0; j < nj; j++)
{
cout << std::setfill('0') << std::setw(4) << csum[j] << " " << endl
>
}
cout << endl << endl;

Mark Edmonds 13

	Chapter 7: Arrays
	Arrays
	Declaration and Initialization
	Array Access
	Array size
	Passing arrays to functions
	Returning arrays from functions

	Example: fill_array_with_input.cpp
	Multi-dimensional arrays
	Passing multi-dimensional arrays to functions
	Returning multi-dimensional arrays from functions

	Exercises

