
Functions for all subtasks

Chapter 5: Functions for all subtasks

Instructor: Mark Edmonds

edmonds_mark@smc.edu

Header vs. Implementation files

• Typically, we’ll write our function declarations in header and our function implementations in
an implementation file.

• Header files have the extension .h and implementation files have the extension .cpp
• We separate the declaration from the implementation due to how C++ is compiled, but more
details on that later.
– The gist of this is that the header file can be included in as many files as you want with
statements like #include but the implementation file can only be compiled once. If you
include an implementation file inmultiple files, you’ll get a compiler error saying something
about “multiple definitions”

• Let’s look at an example of how to separate the function declaration from the implementation
and how to use a function in a separate file. Remember this example from the last lecture notes?
We’ll use it as a reference:

1 #include <iostream>
2
3 using namespace std;
4
5 void print_squares(void); // function declaration, to be moved to a

header file
6
7 int main(void)
8 {
9 print_squares();
10 // amazing things
11 print_squares();
12 return 0;
13 }
14
15 // function implementation/definition, to be moved to an implementation

file
16 void print_squares(void)
17 {
18 int i;
19 for(i=1; i <=5; i++)

Mark Edmonds 1

mailto:edmonds_mark@smc.edu

Functions for all subtasks

20 {
21 cout << i*i << endl;
22 }
23 }

• Next, I’ll show how to split these definitions into separate files

print_squares.h

1 #include <iostream>
2
3 using namespace std;
4
5 // declare the function. This will make any file that includes

print_squares.h aware that a print_squares() function exists
6 void print_squares(void);

print_squares.cpp

1 // need to include the header so we have access to std::cout
2 // we should ONLY include the print_squares.h header. Any other

includes should be directly placed inside print_squares.h (like <
iostream>)

3 #include "print_squares.h"
4
5 void print_squares(void)
6 {
7 int i;
8 for(i=1; i <=5; i++)
9 {
10 cout << i*i << endl;
11 }
12 }

main.cpp

1 #include <iostream>
2
3 // need to include print_squares so we have access to the print_squares

() function

Mark Edmonds 2

Functions for all subtasks

4 #include "print_squares.h"
5
6 using namespace std;
7
8 int main(void)
9 {
10 print_squares();
11 // amazing things
12 print_squares();
13 return 0;
14 }

Call-by-reference parameters

• So far, when we’ve passed arguments to a function, those arguments were copied inside of the
scope of the function, meaning any modification inside of the function will not a�ect the caller’s
variables.

• To illustrate this, consider the following:

1 #include <iostream>
2
3 using namespace std;
4
5 int dummy_func(int param){
6 // this modification doesn't affect the variable that was passed into

the function
7 param++;
8 return param;
9 }
10
11 int main(){
12 int a = 5;
13 int b = dummy_func(a); // a is copied to dummy_func
14 // since a was copied (and then the copied value was modified in

dummy_func, then returned), the value of a in main does not change
15 cout << "a: " << a << ", b: " << b << endl;
16 }

• For call-by-reference, the basic idea is instead of copying arguments to a function, use the same
underlying memory location to pass values into a function (i.e. instead of duplicating the caller’s
box when calling a function, use the same box).

Mark Edmonds 3

Functions for all subtasks

– Call-by-reference is also called “pass-by-reference”
• Call-by-reference prevents the value from being copied and instead tells the function to directly
modify the variable stored in the caller’s scope
– This is clearly useful!
– So far, we’ve only been able to return a single data type, but if we canmodify parameters in
the caller’s scope, we have a way to “return” multiple values by telling the parameters “not
to copy” into the function’s scope.

• To pass a variable by reference, we modify its type to include a & to indicate we wish to use a
reference to the type:

1 #include <iostream>
2
3 using namespace std;
4
5 int dummy_func(int& param){ // the int& indicates we want a reference

to an int as the argument
6 // this modification WILL affect param in the caller's scope
7 param++;
8 return param;
9 }
10
11 int main(){
12 int a = 5;
13 int b = dummy_func(a); // a is not copied to dummy_func, but instead

is passed by reference
14 // since a was NOT copied and instead passed by reference, the value

of a in main DOES change
15 cout << "a: " << a << ", b: " << b << endl;
16 }

Call-by-reference use cases

• But when would you use this? Why would you use this? There are twomain cases:

1. “Returning” multiple values from a function
• Previously, if we wanted to return a value from a function, we could return at most one
value of the type specified by the rtype in the function signature

• Pass-by-reference allows us to “return” values. For instance, dummy_func could bemade a
void function. We can then extend this to “return” multiple things from a function, by
passing every “return” variable by reference:

Mark Edmonds 4

Functions for all subtasks

1 void dummy_func(int& param){ // the int& indicates we want a reference
to an int as the argument

2 // this modification WILL affect param in the caller's scope
3 param++;
4 // we don't really need to return in this case, as param has already

been modified in the caller's scope
5 }

2. Memory e�iciency
• Since there is no copy that occurs when we pass-by-reference, we can save time by pre-
venting the computer from copying a large amount a data from the caller to callee (this will
be relevant later once we learn about classes and structs)

• To do this, you would typically pass by constant reference, so the callee cannot modify
the data. For the function signature of dummy_func above could be: int dummy_func
(const int& param) (note the param++ line would then fail to compile, as we aren’t
allowed to modify a constant int)

reference.cpp

• This program showcases uses cases of pass-by-reference

1 // This program demonstrates how you can use reference parameters
2
3 #include <iostream> // for std::cout and std::cin
4 using namespace std; // supports cout
5
6 void get_values(int& input1, int& input2);
7 void swap_values(int& var1, int& var2);
8 void show_values(int value1, int value2);
9
10 int main()
11 {
12 int first = 0, second = 0;
13
14 get_values(first, second);
15 show_values(first, second);
16 swap_values(first, second);
17 show_values(first, second);
18 return 0;
19 }
20

Mark Edmonds 5

Functions for all subtasks

21 // this effectively implements a "multiple return" as our two
parameters are modified by the function

22 void get_values(int& input1, int& input2)
23 {
24 cout << "Please enter two values: ";
25 cin >> input1 >> input2;
26 }
27
28 // this also implments a "multiple return"
29 void swap_values(int& var1, int& var2)
30 {
31 int temp = var2;
32 var2 = var1;
33 var1 = temp;
34 }
35
36 void show_values(int value1, int value2)
37 {
38 cout << "value1 = " << value1 << " and value2 = " << value2 << endl;
39 }

Debugging & Testing

• It is very di�icult to write correctly the first time. Even for the most experienced programmers
• Writing tests and debugging your code is a great way to ensure you find problems with your code
before it causes a problem for your employer, client, or customer.

• In fact, this is the basis of the automated grading system used in this course.
– When you submit your code, a series of tests are launched to check the output of your code
against known correct values

– Getting in the habit of writing test cases for your code is a very good idea and will make life
less painful later on

Debugging Techniques

• Debugging is a bit of an art. One thing to keep in mind is to keep an openmind. It’s extremely
common to be quite certain you know the error is in one part of the code, when it’s actually in
another.
– Implementing sanity checks as you code can help alleviate this; if you KNOW your program
works up to point, you have a much better idea where the problem is. You need to have

Mark Edmonds 6

Functions for all subtasks

actually written code to verify that the programworks up to a certain point; don’t just think
it works up to that point. Prove it with a check.

• You can use the debugger in Visual Studio or XCode (or any IDE) to help step through and inspect
variable values as your program executes.
– Visual studio debugging guide
– XCode debugging guide
– All debuggers rely on a few concepts. They control where to stop executing and pause using
breakpoints. Once the program is paused at a breakpoint, you can:
* continue (continue running the program until the next breakpoint is hit or the program
terminates)

* step over (go to the next line of code, jumping over any function calls)
* step in (if the current line is a function call, go inside of the function and pause)
* step out (execute the current function to completion and pause at the next line of the
caller’s function)

* If the current line is not a function call, step over and step in are equivalent
• The assert statement is extremely helpful to writing tests

– Assert statements can be used to check an expected pre-condition or post-condition of a
function

– A pre-condition of a function is a condition that the function expects to be met before
the function can correctly execute. For instance, a pre-condition may be that one of the
arguments is greater than 0

– A post-condition of a function is a condition that should be true a�er the function has
executed. For instance, a post-condition may be the the return value is greater than an
input argument

– Include the <cassert> library to use the assertmacro
– As an example of how to use an assert, consider the following test for our original
dummy_func:

1 #include <iostream>
2 #include <cassert>
3
4 using namespace std;
5
6 int dummy_func(int param){
7 param++;
8 return param;
9 }
10
11 int main(){

Mark Edmonds 7

https://docs.microsoft.com/en-us/visualstudio/debugger/debugger-feature-tour?view=vs-2019
https://developer.apple.com/library/archive/documentation/ToolsLanguages/Conceptual/Xcode_Overview/UsingtheDebugger.html

Functions for all subtasks

12 int a = 5;
13 int b = dummy_func(a);
14 assert(b == 6); // b should be incremented
15 assert(a == 5); // a should not have been modified
16 cout << "a: " << a << ", b: " << b << endl;
17 }

Exercises

1. Write a function to swap the values stored in two variables

1 // function definition to swap the values.
2 void swap(int &x, int &y) {
3 int temp;
4 temp = x; /* save the value at address x */
5 x = y; /* put y into x */
6 y = temp; /* put x into y */
7 return;
8 }

2. Write a test case to verify that the swap function works correctly

1 #include <iostream>
2 #include <cassert>
3
4 using namespace std;
5
6 // function definition to swap the values.
7 void swap(int &x, int &y) {
8 int temp;
9 temp = x; /* save the value at address x */
10 x = y; /* put y into x */
11 y = temp; /* put x into y */
12 return;
13 }
14
15 int main(){
16 int test1 = 2, test2 = 7;
17 swap(test1, test2);
18 assert(test1 == 7); // test1 should be swapped with original value of

test2

Mark Edmonds 8

Functions for all subtasks

19 assert(test2 == 2); // test2 should be swapped with original value of
test1

20 }

Mark Edmonds 9

	Chapter 5: Functions for all subtasks
	Header vs. Implementation files
	print_squares.h
	print_squares.cpp
	main.cpp

	Call-by-reference parameters
	Call-by-reference use cases
	reference.cpp

	Debugging & Testing
	Debugging Techniques

	Exercises

