
More Flow of Control

Chapter 3: More Flow of Control

Instructor: Mark Edmonds

edmonds_mark@smc.edu

Using Boolean Expressions

Relational and Equality Operators

• Relational and equality operators return boolean values (booleanmeaning true or false)
• Relational operators

– < less than
– > greater than
– <= less than or equal to
– >= greater than or equal to

• Equality operators
– == equals
– != not equals

Unary Operators

• Unary means it only acts on a single variable (whereas so far other operators have acted on two
variables/values)

• Unary operators
– & address-of (gets the memory address of a variable)
– * contents-of (gets the contents stored in a memory address)
– - negation
– + plus
– ! logical negation
– (type) type casting

* Type casting allows us to convert one variable type into another type
* Notice that this does not round, it truncates
* For instance, common use is to typecase a floating point number into an integer:

1 int b = (int)3.5; // 3.5 will be truncated to 3

Logical Operators

• ! logical negation

Mark Edmonds 1

mailto:edmonds_mark@smc.edu

More Flow of Control

• && logical AND
• || logical OR

Precedence

• 1 (highest)
– ++/--Postfix increment and decrement
– ()Function calls
– [] Array subscripting
– . structure/union access
– -> structure/union member access through pointer

• 2 (second highest)
– ++/-- Prefix increment and decrement
– +/- unary plus andminus
– ! logical not
– (type) type casting
– * dereference
– & address-of

• 3 (third highest)
– *multiplication
– / division
– % remainder division

• 4 (forth highest)
– + addition
– - subtraction

• 5 (fi�h highest)
– < less than
– > greater than
– <= less than or equal to
– >= greater than or equal to

• 6 (sixth highest)
– == equal
– != not equal

• 7 (seventh highest)
– && logical AND

• 8 (eighth highest)
– || logical OR

• 9 (ninth highest)

Mark Edmonds 2

More Flow of Control

– ?: ternary conditional
• 10 (tenth highest)

– = assignment (and all other forms of assignment, +=, -=, *=, /=, %=)
• 11 (eleventh highest)

– , comma (for creating multiple variables)

precedence.cpp

1 #include <iostream> // for std::cout and std::cin
2 using namespace std; // supports cout and cin
3
4 int main()
5 {
6 double value1 = 0.0, value2 = 0.0;
7
8 // Prompt the user for values
9 cout << "Please enter two values: ";
10 cin >> value1 >> value2;
11
12 // This next code segment demonstrates the precedence rules
13 if (2 * value1 + 7.0 < value2 - 12.2 * 1.1) {
14 cout << "The first complex expression is true" << endl;
15 }
16 if (2.5 * value1 == value2 / 2.0) {
17 cout << "The second complex expression is true" << endl;
18 }
19 if (100 / value1 > value2 * 3) {
20 cout << "The third complex expression is true" << endl;
21 }
22
23 return 0;
24 }

Logical Expressions

• A way to evaluate operations over logical values (i.e. 0 for false and anything else for true)
• Gives a way to encode “this AND that” or “this OR that”
• Consider the following:

1 a || b // 1 when EITHER a OR b is true, 0 otherwise
2 a && b // 1 when BOTH a AND b are true, 0 otherwise

Mark Edmonds 3

More Flow of Control

3 !a // 1 when a is false, 0 otherwise

• We can string multiple logical expressions together to create compound logical expressions:

1 ((a && b) || (c > d))

Multiway Branches

Nesting

If statements can be nested, meaning you have if statements inside of if statements

nesting.cpp

1 /* Let's try writing some nested conditional statements... */
2 #include <iostream>
3
4 using namespace std;
5
6 int main() {
7 int temperature;
8 /* Prompt for values */
9 cout << "\t\tNested Logic Program\n\n";
10 cout << "Please enter today's temperature: ";
11 cin >> temperature;
12
13 if (temperature < 50) {
14 cout << "Gosh, it feels cold...\n";
15 if (temperature < 32) {
16 cout << "And it looks like it's freezing...\n";
17 }
18 else if (temperature < 40) {
19 cout << "And it's nearly freezing...\n";
20 }
21 else {
22 cout << "But atleast it's not freezing cold!\n";
23 }
24 }
25 else if (temperature > 90) {
26 cout << "Gosh, it's hot...\n";
27 if (temperature > 110) {

Mark Edmonds 4

More Flow of Control

28 cout << "And it's just boiling... head for air conditioning
...\n";

29 }
30 else if (temperature > 100) {
31 cout << "Atleast it's not boiling...\n";
32 }
33 else {
34 cout << "What a heat wave!!\n";
35 }
36 }
37 else {
38 cout << "Doesn't California have a nice climate!\n";
39 }
40 return(0);
41 }

• The conditional expression is an if statement that can be assigned to a variable. It is commonly
called the ternary operator
– The syntax is the following:

1 (/* logical expression goes here */) ? (/* if non-zero (true) */) : (/*
if 0 (false) */)

• If the logical expression is true, the overall condition evaluates to the expression between the ?
and the :.

• If the logical expression is false, the overall condition evaluates to the expression a�er the :
• For example, if we want to set c to be the larger value of two variables a and b, we could write
the following:

1 c = (a > b) ? a : b;

Switch-Case Statement

• The switch...case statement enables us to write many “cases” that could be handled by
if...else in a manner that is sometimes cleaner than if...else statements.
– However, the switch statement only switches on an integer or enum type, so if you are
branching/selecting on amore complex type, you’ll have to use if...else

• Basic syntax:

1 switch (/* integer or enum goes here */) {
2 case /* potential value of the aforementioned int or enum */:

Mark Edmonds 5

More Flow of Control

3 /* code */
4 case /* a different potential value */:
5 /* different code */
6 /* insert additional cases as needed */
7 default:
8 /* more code */
9 }

• The switch uses a variable, and integer or enum, to control which case to evaluate. This is a
limiation; if you must compare more complicated data, you cannot use a switch...case

• This variable is compared against each case, one the comparison is true, that particular case
will activate (execute)
– Once a case has been activated, no other cases will be evaluated

• Typically, the last statement for each case is a break statement. The causes the program to jump
to the statement following the closing } of the switch statement.
– This basically ends the switch statement (and this behavior is probably your intuitionbehind
each case

– However, if you omit the break, the cases “fall throw” until the end of the switch or until a
break is reached

• If no cases are matched and a default case is specified, the default case will execute.
– Use of default is optional.

multiselect.cpp

1 /* Let's try writing a switch statement... */
2 #include <iostream>
3
4 using namespace std;
5
6 int main() {
7 char letter;
8 /* Prompt for values */
9 cout << "\t\tCase Statement Program\n\n";
10 cout << "Please enter a letter to inspect: ";
11 cin >> letter;
12
13 /*
14 FYI: you can only switch on a
15 integral value. The char datatype is just another
16 name for the set of ints between 0 and 255, so you

Mark Edmonds 6

More Flow of Control

17 can switch on chars or ints
18 */
19 switch(letter) {
20 /*
21 Individual letters must be single-quoted.
22 Individual letters map directly to constant
23 integer values based on the ASCII table which
24 we will learn about in upcoming units. The
25 value of each case must be a constant value,
26 not an expression or variable. This often
27 makes switch statements not applicable to your
28 situation.
29 */
30 case 'a':
31 case 'e':
32 case 'i':
33 case 'o':
34 case 'u':
35 case 'y':
36 /*
37 Lacking break statements in the upper
38 listed cases, they will all "fall thru"
39 to the set of statements shown here.
40 While at first this may seem very convenient,
41 this is actually the number one programming
42 bug worldwide. Namely, that folks forget that
43 all the above cases are collapsing down to
44 the code shown below. So use this form
45 with great caution, as it often leads to
46 bugs...
47 */
48 cout << "a nice lowercase vowel!\n";
49 break;
50 case 'A':
51 case 'E':
52 case 'I':
53 case 'O':
54 case 'U':
55 case 'Y':
56 cout << "a nice UPPERCASE vowel!\n";
57 break;
58 case '0':
59 case '1':

Mark Edmonds 7

More Flow of Control

60 case '2':
61 case '3':
62 case '4':
63 case '5':
64 case '6':
65 case '7':
66 case '8':
67 case '9':
68 cout << "a nice number!\n";
69 break;
70 default:
71 /*
72 The default case is the one selected when
73 no other cases actually match the switched
74 data
75 */
76 cout << "this is not something I recognize...\n";
77 break;
78 }
79 return(0);
80 }

More C++ Loops

For Loops

• Functionally equivalent to a while loop, but people find them to bemore readable/maintainable.
• Typically in awhile, you’d put some code tomodify the controlling condition as the last statement
to the while loop (increment, decrement, etc)
– A for loopmoves this to the definition of the loop

• Syntax:

1 for (initialization; controlling condition; loop-ending statement) {
2 /* code */
3 }

• The initialization statement is executed once - at the beginning of the loop
– Typically, you would assign some variable to be a particular value in this loop section

• The controlling condition is the test executed to determine whether or not the loop should run
again.
– It is checked when the loop starts.

Mark Edmonds 8

More Flow of Control

• The loop-ending statement is typically a form of incrementing/decrementing a value.
– This statement is executed at the end of every loop statement, but before the controlling
condition is checked

– If you used a continue statement, this statement is also executed (i.e. it is not skipped
because of the use of a continue).

• Any of these may be omitted.
– You do not have to run an initialization statement
– You do not have to provide a controlling condition

* What must you do to make sure your loop terminates if this is omitted?
– You do not have to provide a loop ending statement

* What must you do to make sure your loop terminates if this is omitted?
• Counting example:

1 int i;
2 for (i = 1; i <= 10; i++) {
3 cout << i << " ";
4 }

• A for loop can be given no conditions:

1 for (;;) {
2 /* block of statements */
3 }

• This is an infinite loop because it will loop forever unless there is a break statement in the block
for the loop

• Youmay also use the comma operator to addmultiple statements inside the loop:

1 int i, j, n = 10;
2 for (i = 0, j = 0; i <= n; i++, j += 2) {
3 cout << "i = " << i << ", j = " << j << endl;
4 }

Exercises

Write a C++ program to find whether a given year is a leap year or not.

1 #include <iostream>
2
3 using namespace std;
4

Mark Edmonds 9

More Flow of Control

5 void main()
6 {
7 int chk_year;
8
9 cout << "Input a year :");
10 scanf("%d", &chk_year);
11 if ((chk_year % 400) == 0)
12 cout << "%d is a leap year.\n", chk_year);
13 else if ((chk_year % 100) == 0)
14 cout << "%d is a not leap year.\n", chk_year);
15 else if ((chk_year % 4) == 0)
16 cout << "%d is a leap year.\n", chk_year);
17 else
18 cout << "%d is not a leap year \n", chk_year);
19 }

Write a C++ program to read any day (7 days of the week) in integer form (as a number) and display day
name using the corresponding word 1 - Monday 2 - Tuesday 3 - Wednesday . . . 6 - Saturday 7 - Sunday

1 #include <stdio.h>
2 void main()
3 {
4 int dayno;
5 cout << "Input Day No : ");
6 scanf("%d",&dayno);
7 switch(dayno)
8 {
9 case 1:
10 cout << "Monday \n");
11 break;
12 case 2:
13 cout << "Tuesday \n");
14 break;
15 case 3:
16 cout << "Wednesday \n");
17 break;
18 case 4:
19 cout << "Thursday \n");
20 break;
21 case 5:
22 cout << "Friday \n");
23 break;
24 case 6:

Mark Edmonds 10

More Flow of Control

25 cout << "Saturday \n");
26 break;
27 case 7:
28 cout << "Sunday \n");
29 break;
30 default:
31 cout << "Invalid day number. \nPlease try again\n");
32 break;
33 }
34 }

Mark Edmonds 11

	Chapter 3: More Flow of Control
	Using Boolean Expressions
	Relational and Equality Operators
	Unary Operators
	Logical Operators
	Precedence
	precedence.cpp
	Logical Expressions

	Multiway Branches
	Nesting
	Switch-Case Statement
	multiselect.cpp

	More C++ Loops
	For Loops

	Exercises

