Exception Handling

Chapter 16: Exception Handling

Instructor: Mark Edmonds

edmonds_mark@smc.edu

Exceptions

« Exceptions are a simple concept, but a powerful one.
+ So far, if our program has runtime problem (error), we have no way to handle or correct it.
- Imagine if every program you ran immediately crashed upon a problem (e.g. the internet
was not connect, a hard drive was removed, etc). Very hard to use a computer!
- You may remember older programs that would crash and say “Program exited with code
47” (or some other code) without providing much detail.
* These were unhandled exceptions, and the program crashing was the way to “fix” the
problem by not allowing more problems to occur in a bad program state.
« In the programs we’ve written, you can imagine having issues in a number of ways:
- Auser could pass the wrong parameters to a function
- Data files that need to be opened for reading or writing could not exist
- ...just about anything you can imagine could go wrong, may go wrong

BankAccount Exceptions

+ Suppose we want to use the + operator to add two BankAccounts together.
« This only makes sense if the accounts are owned by the same person
« But what if the user tries to add two bank accounts together that belong to different people?

BankAccount operator+ (const BankAccount& bl, const BankAccount& b2){
BankAccount result;
if (bl.my_Name == b2.my_Name) {
result = BankAccount(bl.my_Name, bl.my_Balance + b2.my_Balance);

}

return result;

« If the user passes two bank accounts that match as arguments, this works great
+ If the user passes two bank accounts that don’t match as arguments, this doesn’t work well
- We return an uninitialized bank account, but is that the behavior we really want?
- How can the user tell whether or not the operation (adding two bank accounts) succeeded?
* What if both bank accounts were empty...?

Mark Edmonds 1

mailto:edmonds_mark@smc.edu

Exception Handling

« This is problematic, because it excepts the user to be able to interpret a default-initialized bank
account as an error

- The function still returns a value when we really encountered an error - probably not the
behavior we want

- What if we could inform the user of an error in a different way, that didn’t require a special
interpretation of an otherwise “normal” execution during an error?
* This is what exceptions are for!

Caller-Callee Relationship revisited

« Remember our Caller-Callee relationships for functions:

Caller’s Thread

Callee

Figure 1: Caller-callee relationship

+ The red line indicates that we could return to the Caller function during the Callee’s execution if
we encounter an error

+ An exception is an “alternate” return mechanism to designate an error

Mark Edmonds

Exception Handling

The caller then must handle the exception some way, or the program will crash

Sending an exception to the caller is called “throwing” an exception
+ Receiving and handling the exception in the caller is called “catching” an exception

So the Callee can throw an exception, and if the Caller doesn’t catch the exception, then the
program crashes
- The analogy is like playing catch with a ball, except if the ball is dropped, the program
crashes.

Throwing Exceptions
« To throw an exception, we’ll use the throw statement:

throw(std::logic_error("Always write a description of the problem as
the argument to the logic_error constructor"))

« This is like a return statement, in the sense we “pass” a value back to the caller
« std::logic_errorisaclass
- #include <stdexcept>touseit
- We'll eventually learn how to write our own exceptions, but for now, we can use the ones
defined by the Standard Library

Catching Exceptions

« Thecallerneedstotry { }toexecutesome codethatmayproduceanerrorandcatch (){ }
any errors that occur
- You can have as many catch statements as necessary (meaning you can put multiple,
similar to multiple else 1f statements)

try {
// execute code that could throw an exception 1inside of a "try" block

some_function_that_may_throw_a_logic_error();
} catch (std::logic_error e) {
// catch the exception, and do some error recovery procedure.
// In this case, we just print out the exception message
cout << e.what() << endl; // e.what() will return the message
associated with the exception

Mark Edmonds 3

Exception Handling

Example: BankAccount with exceptions

« This example shows how to throw and use exceptions to process potentially invalid data in a
loop.
+ To cause an exception to be thrown, do the following:
1. Create an account
2. Deposit or Withdraw and use a different name than the name you used when you created
the account

Example: ExceptionBankAccount.h

// INTERFACE FILE: baccount.h
/]

// Defines class BankAccount

//

// SAFEGUARDS AND INCLUDES

#ifndef BANKACCOUNT_H // Avoid redeclaring class BankAccount.
#define BANKACCOUNT_H // This code is compiled only once
#include <string> // for class string

namespace cs52 {

[Tl r i 777177
/////// class BankAccount defintion ///////

[HTTTETTTETT T T T i i rrr iy

class BankAccount {
public: // class member functions

//——constructors
BankAccount () ;

BankAccount(std::string initName, double initBalance);
// post: A BankAccount with two arguments when called like this:
// BankAccount anAcct("Hall", 100.00);

//——modifiers

void deposit(double depositAmount);
// post: depositAmount is credited to this object's balance

Mark Edmonds 4

../examples/ch16_exceptions/1-exceptionbanker/ExceptionBankAccount.h

Exception Handling

void withdraw(double withdrawalAmount) ;
// post: withdrawalAmount is debited from this object's balance

//——accessors

double balance() const;
// post: return this account's current balance

std::string name() const;
// post return the account name

void setName(std::string initName);
// post updates the member variable my_name

// ADDED CODE BEGINS HERE

friend std::ostream& operator << (std::ostream& outs, const
BankAccount& b);

friend std::istream& operator >> (std::istream& 1ins, BankAccount&
b);

friend BankAccount operator + (const BankAccount& left, const
BankAccount& right);

friend BankAccount operator - (const BankAccount& left, const
BankAccount& right);

friend bool operator ==(const BankAccount& left, const BankAccount

& right);
friend bool operator < (const BankAccount& left, const BankAccount
& right);
friend bool operator > (const BankAccount& left, const BankAccount
& right);
private:
std::string my_name; // Uniquely identify an object
double my_balance; // Store the current balance (non-persistent)
+s
}

#endif // ifndef BANKACCOUNT_H

Example: ExceptionBankAccount.cpp

Mark Edmonds 5

../examples/ch16_exceptions/1-exceptionbanker/ExceptionBankAccount.cpp

Exception Handling

~N O U A W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
4

// IMPLEMENTATION FILE: baccount.cpp
/]

// Implements 1. class BankAccount member functions

/1

#include "ExceptionBankAccount.h" // allows for separate compilation
if you want

#include <jostream> // for ostream << and 1distream >>

#include <string> // for class string

#include <stdexcept> // supports Linux exception classes

using namespace std;
namespace cs52 {
//——constructors
BankAccount: :BankAccount()
{

my_name = "?name?";
my_balance = 0.0;

BankAccount: :BankAccount(string initName, double initBalance)

{
my_name = 1initName;
my_balance = initBalance;

//-——modifiers

void BankAccount::deposit(double depositAmount)

{
my_balance = my_balance + depositAmount;
}
void BankAccount::withdraw(double withdrawalAmount)
{
my_balance = my_balance - withdrawalAmount;
}

Mark Edmonds

Exception Handling

//——accessors

double BankAccount::balance() const

{

return my_balance;

string BankAccount::name() const

{

return my_name;

void BankAccount::setName(string initName)

{

my_name = 1initName;

// NEW CODE STARTS HERE

std::ostream& operator << (std::ostream& outs, const BankAccount& b)
{
outs << b.my_name << " " << b.my_balance << endl;
return(outs);

std::istream& operator >> (std::istream& ins, BankAccount& b) {
ins >> b.my_name >> b.my_balance;
return(1ins);

BankAccount operator + (const BankAccount& left, const BankAccount&
right) {
BankAccount newB;
if (left.my_name == right.my_name) {
newB.deposit(left.my_balance);
newB.deposit(right.my_balance);

}
else {
cerr << "YIKES! These two accounts can't be added together
since the names differ!" << endl;
throw logic_error("Bad account names");
}

return(newB);

Mark Edmonds

Exception Handling

BankAccount operator - (const BankAccount& left, const BankAccount&
right) {
BankAccount newB;
if (left.my_name == right.my_name) {
newB.deposit(left.my_balance);
newB.withdraw(right.my_balance);

}
else {
cerr << "YIKES! These two accounts can't be subtracted
together since the names differ!" << endl;
throw logic_error("Bad account names");
}

return(newB);

bool operator ==(const BankAccount& left, const BankAccount& right) {
return((left.my_balance == right.my_balance) && (left.my_name ==
right.my_name));

bool operator < (const BankAccount& left, const BankAccount& right) {
return(left.my_balance < right.my_balance);

bool operator > (const BankAccount& left, const BankAccount& right) {
return(left.my_balance > right.my_balance);

Example: ExceptionBanker.cpp

// This program demonstrates how to make use of existing objects.
// This program uses a BankAccount class with the interface described
// in class.

#include <jostream> // for std::cout

#include <string> // for string class
#include "ExceptionBankAccount.h" // for BankAccount class
#include <stdexcept> // supports Linux exceptions

Mark Edmonds 8

../examples/ch16_exceptions/1-exceptionbanker/ExceptionBanker.cpp

Exception Handling

using namespace std; // supports cout
using namespace cs52; // for BankAccount class

enum CHOICE { CREATE, DEPOSIT, WITHDRAW, PRINT, QUIT };
CHOICE menu();

int main()
{
CHOICE choice;
BankAccount account, withdrawaccount, depositaccount;
string name;
double balance;

cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.precision(2);

cout << endl << endl << "\t\tWelcome to the Bank of SMC!" << endl;
do {
choice = menu();
try {
switch (choice) {
case CREATE:
cout << "Please enter your name and opening bank balance: "
5
cin >> name >> balance;
account.setName(name) ;
account.deposit(balance);
break;
case DEPOSIT:
cout << "Please enter your name and amount to withdrawal: "
5
cin >> name >> balance;
depositaccount.setName (name) ;
depositaccount.deposit(balance);
account = account + depositaccount;
break;
case WITHDRAW:
cout << "Please enter your name and amount to withdrawal: "
5
cin >> name >> balance;

Mark Edmonds 9

Exception Handling

withdrawaccount.setName (name) ;
withdrawaccount.deposit(balance);
account = account - withdrawaccount;
break;
case PRINT:
cout << account;
break;
case QUIT:
break;
+
} catch (logic_error le) {
cout << "Caught logic_error" << endl;
cout << "Transaction failed to process" << endl;
cout << "Please try again!" << endl;

} while (choice != QUIT);

return 0;

CHOICE menu() {
CHOICE result;
char answer;
cout << "(C)reate (D)eposit (W)ithdrawal (P)rint (Q)uit ";
cin >> answer;
switch (answer) {

case 'C':

case 'c':
result = CREATE;
break;

case 'D':

case 'd':
result = DEPOSIT;
break;

case 'W':

case 'w':
result = WITHDRAW;
break;

case 'P':

case 'p':
result = PRINT;
break;

Mark Edmonds 10

Exception Handling

case 'Q':

case 'q':
result = QUIT;
break;

}

return(result);

+ Thisis a good example because classes typically throw exceptions to indicate failure
+ Thisis sense, the class is typically the callee and the user of the class is the caller

Auto example

+ Exceptions are good because they allow you to greatly simplify your error checking using a
consistent system that handles all error checking in one place

« To illustrate this, let’s consider the following example

« We’'llimagine we have a Car class that can fail for a number of reasons, each of which is specific
to a reasonable real-world circumstance a car may face

Example: auto_if.cpp

WITH A C-MENTALITY AND NO EXCEPTION HANDLING....

/// Supposing I Have The Class Auto
/// I Am Going To Drive To Work...

Car c("Honda", "Prelude");
rv = c.openDoor () ;
if (rv == DOOR_LOCKED || rv == CAR_STOLEN || rv == WRONG_KEYS || rv ==
WRONG_CAR) {
// something bad happened...
}
else {
rv = c.insertKey();
if (rv == WRONG_KEYS || rv == KEY_UPSIDE_DOWN || rv == WRONG_CAR) {
// something bad happened...
}

else {

Mark Edmonds n

../examples/ch16_exceptions/2-Auto/auto_if.cpp

Exception Handling

20 rv = c.turnkKey();
21 if (rv == DEAD_BATTERY || rv == NO_GAS || rv ==
ASTEROID_HITS_ENGINE || rv == SADDAM_IN_ENGINE) {
22 // something bad happened...
23 }
24 else {
25 rv = c.intoReverse();
26 if (rv == CLUTCH_DIED || rv == GEAR_FAILED || rv == FLAT_TIRE
|| rv == NO_GAS || rv == PARKING_BRAKE_UP) {
27 // something bad happened...
28 1
29 else {
30 rv = c.drive();
31 if (rv == CLUTCH_DIED || rv == GEAR_FAILED || rv == NO_GAS
|| rv == NUCLEAR_WAR) {
32 // something bad happened.
33 1
34 else {
35 rv = c.intoFirst();
36 if (rv == CLUTCH_DIED || rv == GEAR_FAILED || rv == NO_GAS ||
rv == SPACE_SHUTTLE_DEBRIS_HITS_WINDSHIELD) {
37 // something bad happened...
38 }
39 else {
40 // Isn't this approach ridiculous???
41 // I've literally spent so much time checking for errors,
that I can't figure
42 // out what my code was actually supposed to do...
43 }
44 i
45 }
46 }
a7 }
48 }
49
50
51
52 VERSUS
53
54

55 /// Supposing I Have The Class Auto
56 /// I Am Going To Drive To Work...
57

Mark Edmonds 12

Exception Handling

Car c("Honda", "Prelude");

try {

.openDoor () ;

.insertKey();

.turnkey () ;

.intoReverse();

.drive();

.intoFirst();

} catch(OutOfGasError ooge) {
// something bad happened...

} catch(WrongKeysError wke) {
// something bad happened..

} catch(ClutchDiedError cde) {
// something bad happened...

} catch(GearFailedError gfe) {
// something bad happened...

} catch(FlatTireError fte) {
// something bad happened...

o o o o o 0

Example: auto_exception.cpp

« The above is rather hard to read, hard to maintain, and hard to expand
+ Consider the following similar approach using exceptions

WITH A C-MENTALITY AND NO EXCEPTION HANDLING....

/// Supposing I Have The Class Auto
/// I Am Going To Drive To Work...

Car c("Honda", "Prelude");
rv = c.openDoor();
if (rv == DOOR_LOCKED || rv == CAR_STOLEN || rv == WRONG_KEYS || rv ==
WRONG_CAR) {
// something bad happened...
}
else {
rv = c.insertKey();
if (rv == WRONG_KEYS || rv == KEY_UPSIDE_DOWN || rv == WRONG_CAR) {

Mark Edmonds 13

../examples/ch16_exceptions/2-Auto/auto_exception.cpp

Exception Handling

17 // something bad happened...

18 }

19 else {

20 rv = c.turnKey();

21 if (rv == DEAD_BATTERY || rv == NO_GAS || rv ==

ASTEROID_HITS_ENGINE || rv == SADDAM_IN_ENGINE) {

22 // something bad happened...

23 }

24 else {

25 rv = c.intoReverse();

26 if (rv == CLUTCH_DIED || rv == GEAR_FAILED || rv == FLAT_TIRE

|| rv == NO_GAS || rv == PARKING_BRAKE_UP) {

27 // something bad happened...

28 }

29 else {

30 rv = c.drive();

31 if (rv == CLUTCH_DIED || rv == GEAR_FAILED || rv == NO_GAS
|| rv == NUCLEAR_WAR) {

32 // something bad happened...

33 1

34 else {

35 rv = c.intoFirst();

36 if (rv == CLUTCH_DIED || rv == GEAR_FAILED || rv == NO_GAS ||

rv == SPACE_SHUTTLE_DEBRIS_HITS_WINDSHIELD) {

37 // something bad happened...

38 1

39 else {

40 // Isn't this approach ridiculous???

41 // I've literally spent so much time checking for errors,

that I can't figure

42 // out what my code was actually supposed to do...

43 }

44 }

45 }

46 }

47 }

48 }

49

50

51

52 VERSUS

53

54

Mark Edmonds

14

Exception Handling

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

/17
/17

Car
try

0o o0 o0 o0 o0 0

Supposing I Have The Class Auto
I Am Going To Drive To Work...

c("Honda", "Prelude");

{

.openDoor () ;
.insertKey();
.turnKey () ;
.intoReverse();
.drive();
.intoFirst();

} catch(OutOfGasError ooge) {
// something bad happened...

} catch(WrongKeysError wke) {
// something bad happened...

} catch(ClutchDiedError cde) {
// something bad happened...

} catch(GearFailedError gfe) {
// something bad happened...

} catch(FlatTireError fte) {
// something bad happened...

Mark Edmonds

15

	Chapter 16: Exception Handling
	Exceptions
	BankAccount Exceptions
	Caller-Callee Relationship revisited
	Throwing Exceptions
	Catching Exceptions
	Example: BankAccount with exceptions
	Example: ExceptionBankAccount.h
	Example: ExceptionBankAccount.cpp
	Example: ExceptionBanker.cpp
	Auto example
	Example: auto_if.cpp
	Example: auto_exception.cpp

