Inheritance

Chapter 15: Inheritance

Instructor: Mark Edmonds

edmonds_mark@smc.edu

Inheritance

+ Inheritance allows us to create classes based on other classes
« Forinstance, think of all animals. We could define a hierarchy of all types of animals. Let’s just
consider mammals.
- Each mammal has some common functionality, and as we get more specific in the hierarchy,
the functionality becomes more and more specific.
- For example, all mammals breathe oxygen through air. But whales have fins and rats,
monkeys, and humans have limbs.
- Every specific type of mammal (whale, rats, monkeys, humans) inherit the properties and
functionality of a mammal.

Base class

+ The base class is the starting point for defining a set of classes.
« The most general attributes and methods are defined here
« For example, mammal could be a base class

Derived class

« The derived class extends the base class in some way.
« For example, a whale extends the mammal base class. A monkey could also extend the mammal
base class.

Mammal hierarchy

For instance, we could have the following hierarchy:

Mark Edmonds 1

mailto:edmonds_mark@smc.edu

Inheritance

Whale

Dolphin

Monkey

BlueWhale

Figure 1: Partial hierarchy of mammals

Animal

Mammal

Human

KillerWhale

+ Here, Animal is the base class of the derived class Mammal.
- Mammal is the base class of the derived classes Whale, Rat, Monkey, and Human.

- So a derived class can serve as the base class for another derived class (similar to how a

callee becomes a caller if the callee invokes another function).

Door Example

+ Let’s design a set of door classes for an adventure game
+ What are all the common characteristics of doors?

Door object

« Adoor (as an object), it should know:
- status (open or shut)

+ Adoor (as an objecT), can do:
- Initialize itself as shut

Rat

Mark Edmonds

Inheritance

- Open itself, if possible
- Closeitself
- Tell whether or not it is open

Door class
« Here’s a generic base class:

class Door {
public:
Door () ;
bool isOpen() const;
void open();
void close();
protected:
bool -isShut;

protected qualifier

« The protected qualifier is a compromise between private and public
- protected is public to the base class

protectedis public to friends of the base class

protected is public to the derived classes
protectedis publicto friends of the derived classes

protected is private to other classes

« This allows base classes to:
1. Hide functionality to users of the class (who can only access public members)
2. Expose members to only to derived classes (who can access public and protected mem-
bers)
3. Hide members from both users of the class and derived classes (through private members
of the base class)
- Derived classes cannot access private members of the base class!

Person, Student, Teacher Example

« In this example, we’ll look at an example of a Student and Teacher class that are both derived
from a Person base class (after all, students and teachers are both typically people in the real
world!)

Mark Edmonds 3

Inheritance

+ We'll use the following hierarchy:

Person

Teacher

Figure 2: Person, Student, Teacher Hierarchy

Example Person.h

« Our Person class will serve as our base class

#ifndef PERSON_H
#define PERSON_H

#include <iostream>
#include <string>

namespace cs52 {
class Person {

public:
Person();

Person(std::string name, std::string address);

std::string getName();

std::string getAddress();
void setName(std::string name);

Student

void setAddress(std::string address);

friend std::ostream& operator<<(std::ostream& outs,
const Person& p);

~Person();
private:

Mark Edmonds

../examples/ch15_inheritance/A-Inheritance/Person.h

Inheritance

protected:
std::string my_name;
std::string my_address;
int* integer;

}s

#endif

Example Person.cpp

#include "Person.h"
using namespace cs52;
namespace cs52 {

Person::Person() {

// note the use of an initializer list here
Person::Person(std::string name, std::string address) : my_name(name
)’
my_address(
address)

{

std::string Person::getName() {
return(my_name);

std::string Person::getAddress() {
return(my_address);

void Person::setName(std::string name) {
my_name = name;

Mark Edmonds 5

../examples/ch15_inheritance/A-Inheritance/Person.cpp

Inheritance

void Person::setAddress(std::string address) {

my_address = address;

std::ostream& operator<<(std::ostream& outs,

outs
outs
outs
outs

const Person& p) {
<< "name=";
<< p.my_name;
<< " address=";
<< p.my_address;

return(outs);

Example Student.h

« The Student class inherits from the Person

#ifndef STUDENT_H
#define STUDENT_H

#include
#include

#include

<jiostream>
<string>

"Person.h"

namespace cs52 {

class Student : public Person {

public:

Student();
Student(std::string name, std::string address,

std:
void
std:
void

std::string -id, std::string gpa);

:string getGPA();

setGPA(std::string gpa);

:string getID();

setID(std::string id);

Mark Edmonds

../examples/ch15_inheritance/A-Inheritance/Student.h

Inheritance

friend std::ostream& operator<<(std::ostream& outs,
const Student& s);
private:

protected:
std::string my_ID;
std::string my_GPA;
+s

}
#endif

Example Student.cpp

+ Take note: we must use an initializer list to construct the Person object: : Person(name,
address) inthe constructor for Student

#include "Student.h"
using namespace cs52;
namespace cs52 {

Student: :Student() {

// note the use of an initializer list here
Student: :Student(std::string name, std::string address,
std::string 1id, std::string gpa) : Person(name,
address),
my_ID(id), my_GPA(gpa) {

std::string Student::getGPA() {
return(my_GPA);

void Student::setGPA(std::string gpa) {

Mark Edmonds

../examples/ch15_inheritance/A-Inheritance/Student.cpp

Inheritance

my_GPA = gpa;

std::string Student::getID() {
return(my_ID);

void Student::setID(std::string id) {
my_ID = 1id;

std::ostream& operator<<(std::ostream& outs,
const Student& s) {
Person p = s;
outs << p;
outs << " qd=" << s.my_ID << " gpa=" << s.my_GPA;
return(outs);

Example Teacher.h
+ The Teacher class also inherits from the Person

#ifndef TEACHER_H
#define TEACHER_H

#include <iostream>
#include <string>

#include "Person.h"
namespace cs52 {
class Teacher : public Person {
public:
Teacher ();
Teacher(std::string name, std::string address,

std::string dept);

std::string getDepartment();

Mark Edmonds

../examples/ch15_inheritance/A-Inheritance/Teacher.h

Inheritance

void setDepartment(std::string dept);

friend std::ostream& operator<<(std::ostream& outs,
const Teacher& t);
private:

protected:
std::string my_department;

}s

}
#endif

Example Teacher.cpp

« Take note: we must use an initializer list to construct the Person object: : Person(name,
address) inthe constructor for Teacher

#include "Teacher.h"
using namespace cs52;
namespace cs52 {

Teacher::Teacher () {

// note the use of an initializer list here
Teacher::Teacher(std::string name, std::string address,
std::string dept) : Person(name, address),
my_department(dept) {

std::string Teacher::getDepartment() {
return(my_department);

void Teacher::setDepartment(std::string dept) {
my_department = dept;

Mark Edmonds

../examples/ch15_inheritance/A-Inheritance/Teacher.cpp

Inheritance

std::ostream& operator<<(std::ostream& outs,
const Teacher& t) {
Person p = t;
outs << p;
outs << " department=" << t.my_department;
return(outs);

Example Main.cpp

#include <jostream>

#include "Person.h"
#include "Teacher.h"
#include "Student.h"

int main() {
using namespace std;
using namespace cs52;

Person p("Howie", "Los Angeles");
Teacher t("HowieTeacher", "Santa Monica'", "Business");
Student s("Howie", "Los Angeles'", "102", "3.5");

cout << p << endl;
cout << t << endl;
cout << s << endl;

return(0);

Inheritance Syntax
+ Toinherit from another class, we use the following syntax when defining the class:

class DerivedClass : public BaseClass

Mark Edmonds

10

../examples/ch15_inheritance/A-Inheritance/Main.cpp

Inheritance

// class definition

}s

+ The “syntactic sugar” we added hereisthe : public BaseClass. Thisisinformingthe com-
piler that DerivedClass isinheriting from BaseClass with an “access mode” of public.

Access mode

« The access mode determines how users of the class can interact with the BaseClass when
instantiating a DerivedClass
+ For this, let’s consider the following implementations of BaseClass and DerivedClass

BaseClass
+ BaseClass isjustadummy class in this example - we’ll get to real world examples in a moment

class BaseClass

{
public:
int x;
BaseClass(int x_, int y_, int z_) : x(x_), y(y_), z(z_) {}
protected:
int y;
private:
int z;

DerivedClass

The access modes are:

+ public: public members of the base class will become public members of the derived class and
protected members of the base class will become protected in the derived class
- Inourexample above, BaseClass’s x memberwill be treated aspublicinDerivedClass,
y will be treated as protected in DerivedClass

class DerivedClass : public BaseClass

{
// x is public
// y is protected

Mark Edmonds n

Inheritance

// z is not accessible from DerivedClass
public:
DerivedClass();

« protected: Both the public and protected members of BaseClass become protected in
DerivedClass
- If we changed our declaration of DerivedClass to be: class DerivedClass
protected BaseClass in our example above, BaseClass’s x and y will be treated as
protected members of DerivedClass

class DerivedClass : protected BaseClass

{

// x is protected

// y is protected

// z is not accessible from DerivedClass
public:

DerivedClass();

« private: Both the public and protected members of the BaseClass become private in
DerivedClass
- If we changed our declaration of DerivedClass to be: class DerivedClass
private BaseClass in our example above, BaseClass’s x and y will be treated as

private members of DerivedClass

class DerivedClass : private BaseClass

{

// x is private

// y is private

// z is not accessible from DerivedClass
public:

DerivedClass();

Initializing BaseClasses

+ We must always initialize the base class using an initializer list.
- This is because the base class must be constructed before the derived class. By using
an initializer list, we construct the BaseClass before the DerivedClass is completely
constructed

Mark Edmonds 12

Inheritance

« Forinstance, we could write:

DerivedClass::DerivedClass() : BaseClass(1,2,3) {
// rest of constructor goes here
// we cannot initialize/assign BaseClass here. It must be initialized

in the initializer list

Door Example - Lockable Door

« Let’s look at another door example. This time, we’ll make a new LockableDoor class that

derives from the base Door class

class LockableDoor : public Door {
public:

LockableDoor () ;

bool islLocked() const;

void open();

void lock(); wvoid unlock();
protected:

bool thelock;

+ Notice, we did NOT need to define the functions defined in Door. That’s the point of inheri-
tance; we get the functionality of Door inside of LockableDoor and only need to add the new
functionality we want the LockableDoor to have

- Thisis very useful when you start writing larger pieces of software
+ The LockableDoor object has the following member attributes (data) and member functions:

Member attributes Member methods

isShut isLocked()

theLock open()
lock()
unlock()
isOpen()

close()

Mark Edmonds 13

Inheritance

+ Notice that LockableDoor did not define isShut, open(), isOpen(),or close (). These are
all part of the base class Door, but they are available in LockableDoor

Inheritance behavior

+ By default, all member methods and member data are inherited down to derived classes
- This happens without mentioning these methods and attributes in the derived class defini-
tion
« Any member method or member attribute can be redefined in the derived class
- This hides access to the base class versions - the base class still retains its copies of redefined
member attributes and member methods
» Forinstance, we may wish to redefine the open () functionality of DerivedClass to take into
account whether or not the door is locked:

void LockableDoor: :open()

{
if (ldisLocked()) {
Door::open();

+ We can write this method without defining it again in LockableDoor’s class definition.

« We can use the scope operator : : to specify which version of a function to call (note: we had
to use Door: :open() above. Had we just written open (), we would have started a recursive
infinite loop!)

Using the door examples
« We can now use our doors for different circumstances

Door hallDoor;
LockableDoor frontDoor;

hallDoor.open();

frontDoor. lock();

frontDoor.open();

if (!frontDoor.isOpen())
frontDoor.unlock();

Mark Edmonds 14

Inheritance

Derived classes can become base classes

Door

LockableDoor

CombinationLockDoor

Figure 3: Partial hierarchy of mammals

CombinationLockDoor

PasswordLockDoor

class CombinationLockDoor : public LockableDoor {

public:
CombinationLockDoor (int combo
void unlock(1int combo);
protected:
int thecombination;

0);

« The CombinationLockDoor object has the following member attributes (data) and member

functions:

Member attributes

Member methods

isShut
theLock

thecombination

isLocked()
open()
lock()
unlock(int)

isOpen()

Mark Edmonds

15

Inheritance

Member attributes Member methods

close()

« You can see how easily we can extend functionality to different cases!

Person, Student, Teacher Example - with Pointers

« This example will show how we can use pointers with inheritance, how protected members
are accessible to derived classes, and how redefined members hide access to the parent class
versions

Example PersonPtr.h
« Our Person class will serve as our base class

#ifndef PERSON_H
#define PERSON_H

#include <jostream>
#include <string>

namespace cs52 {

class Person {
public:
Person();
Person(std::string name, std::string address);

std::string getName();

std::string getAddress();

void setName(std::string name);

void setAddress(std::string address);

friend std::ostream& operator<<(std::ostream& outs,
const Person& p);
friend std::ostream& operator<<(std::ostream& outs,
const Personx p);

private:

Mark Edmonds 16

../examples/ch15_inheritance/C-PointerInheritance/Person.h

Inheritance

protected:
std::string my_name;
std::string my_address;

s

#endif

Example PersonPtr.cpp

#include "Person.h"
using namespace cs52;
namespace cs52 {

Person: :Person() {

// note the use of an initializer list here
Person::Person(std::string name, std::string address) : my_name(name
)
my_address(
address)

{

std::string Person::getName() {
return(my_name);

std::string Person::getAddress() {
return(my_address);

void Person::setName(std::string name) {
my_name = name;

Mark Edmonds 17

../examples/ch15_inheritance/C-PointerInheritance/Person.cpp

Inheritance

void Person::setAddress(std::string address) {
my_address = address;

std::ostream& operator<<(std::ostream& outs,
const Person& p) {
outs << "name=";
outs << p.my_name;
outs << " address=";
outs << p.my_address;
return(outs);

std::ostream& operator<<(std::ostream& outs,
const Personx p) {
if (p == NULL) {
outs << "NULL pointer";

}
else {
outs << "name="};
outs << p->my_name;
outs << " address=";
outs << p->my_address;
}
return(outs);
}
}
Example StudentPtr.h

« The Student class inherits from the Person

#ifndef STUDENT_H
#define STUDENT_H

#include <iostream>
#include <string>

#include "Person.h"

Mark Edmonds

18

../examples/ch15_inheritance/C-PointerInheritance/Student.h

Inheritance

namespace cs52 {

class Student : public Person {
public:
Student();
Student(std::string name, std::string address,
std::string -id, std::string gpa);

std::string getGPA();

void setGPA(std::string gpa);
std::string getID();

void setID(std::string 1id);

friend std::ostream& operator<<(std::ostream& outs,
const Student& s);
friend std::ostream& operator<<(std::ostream& outs,
const Studentx s);

private:

protected:
std::string my_ID;
std::string my_GPA;

}s

}
#endif

Example StudentPtr.cpp

+ Take note: we must use an initializer list to construct the Person object: : Person(name,

address) inthe constructor for Student

#include "Student.h"
using namespace cs52;
namespace cs52 {

Student: :Student() {

Mark Edmonds

19

../examples/ch15_inheritance/C-PointerInheritance/Student.cpp

Inheritance

// note the use of an initializer list here
Student::Student(std::string name, std::string address,
std::string id, std::string gpa) : Person(name,
address),
my_ID(id), my_GPA(gpa) {

std::string Student::getGPA() {
return(my_GPA);

void Student::setGPA(std::string gpa) {
my_GPA = gpa;

std::string Student::getID() {
return(my_ID);

void Student::setID(std::string id) {
my_ID = 1id;

std::ostream& operator<<(std::ostream& outs,
const Student& s) {
Person p = s;
outs << p;
outs << " qd=" << s.my_ID << " gpa=" << s.my_GPA;
return(outs);

std::ostream& operator<<(std::ostream& outs,
const Studentx s) {
if (s == NULL) {
outs << "NULL pointer";
}
else {
const Personx p = s;
outs << p;
outs << " qd=" << s->my_ID << " gpa=" << s->my_GPA;

Mark Edmonds

Inheritance

}
return(outs);
}
}
Example TeacherPtr.h

« The Teacher class also inherits from the Person

#ifndef TEACHER_H
#tdefine TEACHER_H

#include <iostream>
#include <string>

#include "Person.h"
namespace cs52 {

class Teacher : public Person {
public:
Teacher () ;
Teacher(std::string name, std::string address,
std::string dept);

std::string getDepartment();
void setDepartment(std::string dept);

friend std::ostream& operator<<(std::ostream& outs,
const Teacher& t);
friend std::ostream& operator<<(std::ostream& outs,

const Teacherx t);

private:

protected:
std::string my_department;

}s

Mark Edmonds 21

../examples/ch15_inheritance/C-PointerInheritance/Teacher.h

Inheritance

}
#endif

Example TeacherPtr.cpp

+ Take note: we must use an initializer list to construct the Person object: : Person(name,
address) inthe constructor for Teacher

#include "Teacher.h"
using namespace cs52;
namespace cs52 {

Teacher::Teacher () {

// note the use of an initializer list here
Teacher::Teacher(std::string name, std::string address,
std::string dept) : Person(name, address),
my_department(dept) {

std::string Teacher::getDepartment() {
return(my_department);

void Teacher::setDepartment(std::string dept) {
my_department = dept;

std::ostream& operator<<(std::ostream& outs,
const Teacher& t) {
Person p = t;
outs << p;
outs << " department=" << t.my_department;
return(outs);

std::ostream& operator<<(std::ostream& outs,
const Teacherx t) {

Mark Edmonds 22

../examples/ch15_inheritance/C-PointerInheritance/Teacher.cpp

Inheritance

if (t == NULL) {
outs << "NULL pointer";

}
else {
const Personx p = t;
outs << p;
outs << " department=" << t->my_department;
}
return(outs);
}
}

Example MainPtr.cpp

#include <iostream>

#include "Person.h"
#include "Teacher.h"
#include "Student.h"

int main() {
using namespace std;
using namespace cs52;

Person* p = new Person("Howie", "Los Angeles");

Teacherx t = new Teacher("HowieTeacher", "Santa Monica", "Business
")

Student* s = new Student("Howie", "Los Angeles", "102", "3.5");

cout << p << endl;
cout << t << endl;
cout << s << endl;

delete(p);
delete(t);
delete(s);

return(0);

Mark Edmonds 23

../examples/ch15_inheritance/C-PointerInheritance/Main.cpp

Inheritance

Relationships between Objects

« IS-A

- Oneclass “is a kind of” another class

- Base classis a general class

- Derived class is a specialization of the general concept
« PART-OF

- Oneclass “is a part of” another class

- often used to represent compound objects

{.mermaid format=svg caption="Difference between IS-A and PART-OF relationship
"}} graph BT Mac -->|IS A| Computer Monitor -->|PART OF| Computer

« Hereis an example of the difference between IS-A and PART-OF.
- Our Mac is-a computer, and the monitor is part-of of a computer

class Monitor {
};

class Computer {
private:
Monitor theMonitor; // a monitor 1is part-of a computer

15

// a mac is-a computer
class Mac : public Computer {

}s

PasswordLockDoor

« Password lock doors are doors that require a password to open or close
o Let’s represent the password asa string
+ The password is “part-of” a PasswordLockDoor

class PasswordLockDoor : public LockableDoor {

public:
PasswordLockDoor (const char c[]="");
void unlock(const char c[]="");
protected:

string thepassword;

Mark Edmonds 24

Inheritance

+ The PasswordLockDoor object has the following member attributes (data) and member func-

tions:

Member attributes Member methods

isShut isLocked()
theLock open()
thepassword lock()

unlock(char(])
isOpen()

close()

Pointers to base classes

« Pointers can be made to point to derived classes
+ Consider the following:

typedef Door* DoorPtr;
DoorPtr p = new Door(); // dynamically allocating a door
p->open(); // calls Door::open

p = new LockableDoor();
p->open(); // which open??

virtual functions

+ Late binding allows the selection of which implementation of a member function to execute to
be determined at runtime

+ C++ performs late binding via virtual functions

«+ Consider this generic base class

class Door {

public:
Door ()
bool isOpen() const;
virtual void open();

Mark Edmonds 25

Inheritance

void close();
protected:
bool isShut;

Auto example

+ This example shows how virtual functions work. The key thing to note here is the definition of
Auto functions as virtual in Auto.h and the use of ptrAutoin Main.cpp.

Example Auto.h
« Our Auto class will serve as our base class

#ifndef AUTO_H
#define AUTO_H
#include "Settings.h"

namespace cs52 {

class Auto {
public:
Auto();

#ifdef USEVIRTUALFUNCTIONS
virtual void -insertKey();
virtual void turn();
virtual void drive();

#else
void insertKey();
void turn();
void drive();

#endif

}s

#endif

Example Auto.cpp

Mark Edmonds 26

../examples/ch15_inheritance/B-Virtual-Functions/Auto.h
../examples/ch15_inheritance/B-Virtual-Functions/Auto.cpp

Inheritance

#include "Auto.h"
#include <iostream>

namespace cs52 {

Auto::Auto() {
/] empty

void Auto::insertKey() {
using namespace std;
cout << "AUTO--inserting the key" << endl;

void Auto::turn() {
using namespace std;
cout << "AUTO--turning the key" << endl;

void Auto::drive() {
using namespace std;
cout << "AUTO--driving the car'" << endl;

Example Honda.h
« The Honda class inherits from the Auto

#ifndef HONDA_H
#define HONDA_H
#include "Settings.h"
#include "Auto.h"

namespace cs52 {
class Honda : public Auto {

public:
Honda();

Mark Edmonds

../examples/ch15_inheritance/B-Virtual-Functions/Honda.h

Inheritance

#ifdef USEVIRTUALFUNCTIONS
virtual void insertKey();
virtual void turn();
virtual void drive();

#telse
void insertKey();
void turn();
void drive();

#endif

}s

#endif

Example Honda.cpp

#include "Honda.h"
#include <iostream>

namespace cs52 {

Honda: :Honda() : Auto() {
// empty

void Honda::insertKey() {
using namespace std;
cout << "HONDA--waking up the mouse..." << endl;

void Honda::turn() {
using namespace std;
cout << "HONDA--feeding the mouse..." << endl;

void Honda::drive() {
using namespace std;
cout << "HONDA--mouse is turning the wheels..." << endl;

Mark Edmonds 28

../examples/ch15_inheritance/B-Virtual-Functions/Honda.cpp

Inheritance

Example Settings.h

« Use this file to control whether or not Auto has virtual functions or not.
+ To prevent Auto from using virtual functions, just comment out the #def-ine in this file

/// uncomment this to create virtual methods
#define USEVIRTUALFUNCTIONS

Example Main.cpp

« Take note of the final PTRAUTO POINTING AT HONDA portion
+ We have an Auto pointer (ptrAuto) pointing to a Honda derived class, and due to the use of
virtual functions, the Auto pointer calls the Honda versions of the functions
- One would think, given ptrAuto is a pointer to the base class Auto, that these calls would
call the Auto versions of the functions. But because they are virtual functions in Auto, the
derived class’s versions are called.
+ Thisis late binding at runtime!

#include "Auto.h"
#include "Honda.h"
#include <iostream>

int main() {
using namespace std;
using namespace cs52;

cout << "—————- AUTO-——---- " << endl;
Auto a;

a.insertKey();

a.turn();

a.drive();

cout << "-————- HONDA--—--- " << endl;
Honda h;

h.insertKey();

h.turn();

h.drive();

Mark Edmonds 29

../examples/ch15_inheritance/B-Virtual-Functions/Settings.h
../examples/ch15_inheritance/B-Virtual-Functions/Main.cpp

Inheritance

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

cout << "doing the same thing with pointer variables..." << endl;

Auto * ptrAuto = NULL;

ptrAuto =

cout <<

ptrAuto-
ptrAuto-
ptrAuto-

ptrAuto
cout <X
// This

&a;

R PTRAUTO POINTING AT AN AUTO------ " << endl;
>insertKey();

>turn();

>drive();

= &h;
e i PTRAUTO POINTING AT AN HONDA------ " << endl;
is where the magic happens.

// remember ptrAuto is a pointer to an Auto, not to a Honda
// But since Auto has these marked as virtual functions,

// the derived class's (Honda) functions are called!

ptrAuto-
ptrAuto-
ptrAuto-

>insertKey();
>turn();
>drive();

return 0;

Mark Edmonds

30

	Chapter 15: Inheritance
	Inheritance
	Base class
	Derived class
	Mammal hierarchy

	Door Example
	Door object
	Door class
	protected qualifier

	Person, Student, Teacher Example
	Example Person.h
	Example Person.cpp
	Example Student.h
	Example Student.cpp
	Example Teacher.h
	Example Teacher.cpp
	Example Main.cpp

	Inheritance Syntax
	Access mode
	BaseClass
	DerivedClass

	Initializing BaseClasses
	Door Example - Lockable Door
	Inheritance behavior
	Using the door examples
	Derived classes can become base classes
	CombinationLockDoor
	Person, Student, Teacher Example - with Pointers
	Example PersonPtr.h
	Example PersonPtr.cpp
	Example StudentPtr.h
	Example StudentPtr.cpp
	Example TeacherPtr.h
	Example TeacherPtr.cpp
	Example MainPtr.cpp

	Relationships between Objects
	PasswordLockDoor
	Pointers to base classes
	virtual functions
	Auto example
	Example Auto.h
	Example Auto.cpp
	Example Honda.h
	Example Honda.cpp
	Example Settings.h
	Example Main.cpp

