
Recursion

Chapter 14: Recursion

Instructor: Mark Edmonds

edmonds_mark@smc.edu

Recursion

• We’ve also talked about functions and the caller/callee relationship
• So what if we have a function call itself?

– I.e. the caller is the same function as the callee
• This is known as recursion and it one of the most powerful ways to control a program.
• The intuition behind this is that we can solve a big problem by breaking it down into a smaller
problem.
– Recursion

Base Cases

• If a function is going to call itself, how will the function eventually stop calling itself?
• If the function doesn’t have a way to stop calling itself, the function will call itself for forever
(essentially an infinite loop) until your computer runs out of resources.

• We fix this problem by creating a base case that doesn’t call the function again

Example: A factorial function

• Definition of a factorial:

n! =
n∏

k=1
k

• How can we write this in a recursive manner?
• How can we write the factorial of n as a function of the factorial of n − 1?

n! = n ∗ (n − 1)!

• Ok, so we can write the factorial of n as a function of the factorial of n − 1. But what should the
base case be?
– When n = 1, we stop

• In C++, this code is incredibly simple to write:

Mark Edmonds 1

mailto:edmonds_mark@smc.edu

Recursion

1 int factorial(int n){
2 // base case
3 if(n == 1)
4 {
5 return 1;
6 }
7 // otherwise, recurs into factorial(n * 1) (this is called the

recursive case)
8 else
9 {
10 return n * factorial(n-1);
11 }
12 }

• How would you write this function using a for loop?

1 int factorial_loop(int n){
2 int fac = 1;
3 for (int i = 1; i <=n; i++){
4 fac *= i;
5 }
6 return fac;
7 }

• The parallel to the base case is the recursive casewhere the function calls itself.
• The recursive case should make some progress towards the base case, otherwise the program
may never terminate

The Fibonacci Sequence

• Fibonacci (introduced the idea in 1202) wondered a simple question has an interesting mathe-
matical formulation: howmany rabbits could be born in a year?

• He assumed the following conditions:
– Begin with onemale rabbit and female rabbit that have just been born.
– Rabbits reach sexual maturity a�er onemonth.
– The gestation period of a rabbit is one month. (How long it takes to give birth - for humans
it’s 9 months typically)

– A�er reaching sexual maturity, female rabbits give birth every month.
– A female rabbit gives birth to onemale rabbit and one female rabbit.
– Rabbits do not die.

Mark Edmonds 2

Recursion

• This is best shown with this diagram:

Figure 1: fibonacci_rabbits.jpg

• A�er onemonth, the first pair is not yet at sexual maturity and can’t mate.
• At two months, the rabbits have mated but not yet given birth, resulting in only one pair of
rabbits.

• A�er three months, the first pair will give birth to another pair, resulting in two pairs.
• At the fourthmonthmark, the original pair gives birth again, and the second pair mates but does
not yet give birth, leaving the total at three pair.

• This continues until a year has passed, in which there will be 233 pairs of rabbits.
• Why Care?

– Fibonacci’s observation extends far beyond breeding rabbits. This pattern shows up in
nature everywhere - growth pattern of sunflower seeds, hurricanes, galaxies. Tons of spirals
in nature follow this pattern

Formal definition

• fn = fn−1 + fn−2

• Initial values at 1 and 2 for fn−1 and fn−2, respectively (this is a hint for our base case!
– f(0) = 0
– f(1) = 1
– f(n) = f(n − 1) + f(n − 2)

Mark Edmonds 3

Recursion

• Howwould you write the recursive version to output

1 int fib(int n){
2 if (n == 0)
3 {
4 return 0;
5 }
6 else if (n == 1)
7 {
8 return 1;
9 }
10 else
11 {
12 return fib(n-1) + fib(n-2);
13 }
14 }

• Think about how this executes in terms of caller/callee
– The recursive call chases down a ‘rabbit hole’ to get to the base cases, and then starts to
return values up to the initial caller, where n is the initial input.

• Howwould you write this function using a for loop?

1 int fib_loop(int n){
2 int first = 0, second = 1, next;
3 for (int i = 0 ; i <= n ; i++)
4 {
5 if (i <= 1)
6 {
7 next = i;
8 }
9 else
10 {
11 next = first + second;
12 first = second;
13 second = next;
14 }
15 }
16 return next;
17 }

• Possible to write using a loop, but less clear, and farther away from the underlying math.

Mark Edmonds 4

Recursion

When to use recursion?

• O�en, a problem can be solved using iteration or recursion.
• I would recommend using recursion when writing the iterative solution is overly complex, but
sticking to using iteration by default.

• Recursion is actually more resource intensive than iteration, because when a function is called, it
enters the call stackwhich requiresmemory to be allocated. So every recursive call usesmemory,
something that isn’t guaranteed to happen with iterative solutions
– So iteration can bemore e�icient

• On the other hand, some problems can be beautifully solved with recursion, but are hard to
write or hard to read in an iterative fashion.
– Fibonacci is the classic example; a recursive solution ismuch easier to read and think about
than the iterative version.

Exercises

1. Write a recursive function that computes the sum of all numbers from 1 to n, where n is given as
parameter.

1 #include<iostream>
2
3 using namespace std;
4
5 int sum_of_range(int);
6
7 int main()
8 {
9 int n;
10 int sum;
11
12 cout << "Input the last number of the range starting from 1: ";
13 cin >> n;
14
15 sum = sum_of_range(n);
16 cout << "The sum of numbers from 1 to " << n << " : " << sum << endl;
17
18 return 0;
19 }
20
21 int sum_of_range(int n)
22 {

Mark Edmonds 5

Recursion

23 if (n == 1)
24 {
25 return 1;
26 }
27 else
28 {
29 return n + sum_of_range(n - 1);
30 }
31 }

2. Write a program in C to count the digits of a given number using recursion

1 #include <iostream>
2
3 using namespace std;
4
5 int num_digits(int n, int count);
6
7 int main()
8 {
9 int n, count = 0;
10 cout << "Input a number: ";
11 cin >> n;
12
13 count = num_digits(n, count);
14
15 cout << "The number of digits in the number is : " << count << endl;
16 return 0;
17 }
18
19 int num_digits(int n){
20 if (n < 10)
21 {
22 return 1;
23 }
24 else
25 {
26 return 1 + num_digits(n/10);
27 }
28 }

3. Write a program in C to convert a decimal number to a binary number using recursion.

Mark Edmonds 6

Recursion

1 #include <iostream>
2
3 using namespace std;
4
5 long convert_to_binary(int decimal, long binary, long factor);
6
7 int main()
8 {
9 long binary = 0;
10 int decimal;
11
12 cout << "Input any decimal number: ";
13 cin >> decimal;
14
15 // seed a binary value of 0 and a factor of 1
16 binary = convert_to_binary(decimal, 0, 1);
17 cout << "The Binary value of decimal number " << decimal << " is: "

<< binary << endl;
18 return 0;
19 }
20 long convert_to_binary(int decimal, long binary, long factor)
21 {
22 long binary_digit;
23
24 if (decimal == 0)
25 {
26 return binary;
27 }
28 else
29 {
30 binary_digit = decimal % 2;
31 binary = binary + binary_digit * factor;
32 factor = factor * 10;
33 return convert_to_binary(decimal / 2, binary, factor);
34 }
35 }

Mark Edmonds 7

	Chapter 14: Recursion
	Recursion
	Base Cases
	Example: A factorial function
	The Fibonacci Sequence
	Formal definition

	When to use recursion?
	Exercises

