Compilation & Namespaces

Chapter 12: Compilation & Namespaces

Instructor: Mark Edmonds

edmonds_mark@smc.edu

Compilation

+ So far, when we’ve compiled our programs, we’ve compiled them from source code all the way
to an executable
+ However, there are multiple stages to the compilation process, and we can compile each part
separately
« For instance, a class definition can be stored separately from a program (by separating the
implementation of the class from the program)
- This allows programmers to use the class in multiple programs, without recompiling the
class
* This is how the Standard Library works - it’s compiled ahead of time, and you just have
to include the header to have access to the class
- Thisis one of the main reasons we separate the interface/header file (.h) from the imple-
mentation file (.cpp)

Compilation process
Preprocessing

+ Preprocessor directives like #include and #define
« The preprocess executes the directives, but is unaware of C++ syntax
- Forinstance, #include directs the preprocessor to go out and fetch the corresponding
interface/header file and copy it at this point in the source code
* That is, the preprocessor replaces the #include directives with the content of the
included files
+ The preprocessor outputs a single output file that is ready to be compiled

Compilation

« The compiler parses C++ source code (that now does not contain any preprocessor directives
like #include) and converts it into assembly code

« The compilation process outputs object files that contains compiled code (in binary form) of the
original source code

+ You can pause the compilation process at this point if you wish

Mark Edmonds 1


mailto:edmonds_mark@smc.edu

Compilation & Namespaces

- Thisis how libraries are made, including the Standard Library
- The object files can be placed into special archives called “static libraries”

« Most of the compilation errors you’ve seen so far most likely occurred at this point
- Forinstance, a missing semicolon ; would be reported at this point

Linking

+ The final stage of the process takes all of the object files and produces a final program that can

be executed on this machine
- This process includes linking against object files that are provided by a library, such as the
Standard Library

« This stage may report errors about missing “symbols” (such a a function that was declared in a
header file, but never defined in any implementation file)

« This stage may also report errors if the same function is defined twice (for instance, if you have
two definitions of the ma+in function, the linker will produce an error)

Namespaces

« Anamespace is a collection of name definitions
- This could be a grouping of class definitions and variable declarations
« Namespaces are important because multiple programmers may define classes and functions
with the same name
- Imagine Programmer A defined a Car class and Programmer B also defined a Car class
* A namespace allows us to specify which Car class we'd like to use

using directive

The Standard Library lives in the std namespace
+ When we’ve been writing using namespace std;, we were telling the compiler "anytime you
can’t resolve a symbol, see if that symbol exists in the std namespace
- Without this directive, we have to write std: : cout instead of writing cout alone
« If we didn’t write using namespace std, we could have defined cout and cin to behave
differently

If you don’t define a namespace, then the code you write is in the global namespace
- No need to use the using directive with the global namespace

Mark Edmonds 2



Compilation & Namespaces

Creating namespaces
« Very simple. Wrap your code with a namespace grouping

namespace nsl

{
// code

// could be a class, or functions, or anything

« Forexample

namespace nsl

{
void hello_world(){
cout << "Hello, World!" << endl;

« And then we can use it like this:

nsl::hello_world();

Name conflicts

« If the same name is used in two namespaces, then the two namespaces cannot be used at the
same time

« For example if hello_world() is defined in namespaces ns1 and ns2, the two versions of
hello_world() could be used in one program using any of the following schemes

int main(){
{
using namespace nsl;
hello_world();
}

// the using directive will terminate when the block terminates
{

using namespace ns2;

hello_world();
}
nsl::hello_world(); // directly using nsl namespace
ns2::hello_world(); // directly using ns2 namespace

Mark Edmonds 3



Compilation & Namespaces

Mark Edmonds



	Chapter 12: Compilation & Namespaces
	Compilation
	Compilation process
	Preprocessing
	Compilation
	Linking

	Namespaces
	using directive
	Creating namespaces
	Name conflicts


