
Arrays

• Arrays enabling storing multiple values under a single variable
• If multiple values are stored in a single variable, we need a way to access each value
• We access values stored in an array using indices, called subscripts
• Values inside of an array are homogeneous, meaning they all have the same type

– Can’t mix ints with floats or vice-versa
• Later we will introduce the idea of a pointer, which extend the use of arrays

Declaration and Initialization

• C arrays are declared in the following form

1 type name[number of elements];

• type specifies the type of every element in the array (since arrays are homogeneous, we only
specify one type)

• name is the identifier/variable name we will use to refer to the array
• number of elements is the number of type elements that the array can store
• To declare an array of 6 integers called numberswe would use:

1 int numbers[6];

• To declare an array of 6 characters called letterswe would use:

1 char letters[6];

• We can initialize the array when we declare it using curly braces and initialization values using
an initializer list:

1 int point[6] = {0,3,1,6,7,2};

• Or we can only initialize the first few elements (this initializes the first 3):

1 int parital[6] = {1,2};

• We can also omit the size of the array and use the size of the initializer as the size of the array
(this will have space for 6 integers):

1 int point[] = {0,3,1,6,7,2};

1



Figure 1: C Array

Array Access

• Now we know how to declare and initialize and array, but how do we access elements in an
array?

• We’ll use an index or subscript to specify which element of the array we want to access
• Arrays are 0-indexed in C, meaning the index of the first element in the array is 0, the second
element in the array is 1, the third is 2, and so forth.
– Important note: the last valid index in an array is the size-1. For instance, in an array of
length 6 (an array that can store 6 elements), the last valid index is 5. 0-5 is 6 numbers.

• Example:

1 int point[6] = {0,3,1,6,7,2};
2 int thirdEle = point[2]; // arrays are 0-indexed in C, so thirdEle will

have the value of 1

• What happens if you access an array with an index is out of the bounds of the array (i.e. use 6 as
an index to the point array?
– It depends. Sometimes the compiler can catch the error, but it’s not guaranteed to.
– If your program executes, it will be in undefined behavior (UB), whichmeans the rest of your
program’s output is rendered meaningless and unpredicable, even if it outputs the correct
thing

2



* Undefined behavior is a large and somewhat esoteric definition, but the point is that
C makes zero guarantee about what will happen a�er you’ve triggered undefined
behavior.

• Examples:

1 char y;
2 int z = 9;
3 char point[6] = { 1, 2, 3, 4, 5, 6 };
4 //examples of accessing outside the array. A compile error is not

always raised
5 y = point[15];
6 y = point[-4];
7 y = point[z];

• Your programmay continue running normally a�er these cases, but you have entered UB. This
must be avoided at all costs!

• But there’s got to be a better way to make sure we stay within the bounds. . .
– Well not for every case, but for any type of loop, we can use sizeof() to as the limit on
the number of iterations the loop executes

– Here’s an example:

1 int i;
2 int arr[] = {3, 6, 9, 12, 15};
3
4 printf("sizeof(arr): %lu\n", sizeof(arr));
5 printf("sizeof(int): %lu\n", sizeof(int));
6
7 int arr_len = sizeof(arr) / sizeof(int);
8
9 printf("array is length %d\n", arr_len);
10
11 for (i = 0; i < arr_len; ++i)
12 {
13 printf("arr[%d]: %d\n", i, arr[i]);
14 }

• This is a great way to ensure you stay within the bounds of the array!

Passing arrays to functions

• To pass an array to a function, we’ll pass the name of the variable of the array.

3



• However, in the function signature, wemust tell the compiler we are passing an array:

1 #include <stdio.h>
2
3 // [] after the variable name indicates the variable is an array
4 float average(float arr[], size_t arr_len);
5
6 int main()
7 {
8 float avg;
9 float arr[] = { 23.4, 55, 22.6, 3, 40.5, 18 };
10 int arr_len = sizeof(arr) / sizeof(float);
11
12 avg = average(arr, arr_len); /* Only name of array is passed as

argument. */
13
14 printf("Average age=%.2f", avg);
15 return 0;
16 }
17
18 // [] after the variable name indicates the variable is an array
19 float average(float arr[], size_t arr_len)
20 {
21 int i;
22 float avg, sum = 0.0;
23 for (i = 0; i < arr_len; ++i) {
24 sum += arr[i];
25 }
26 avg = (sum / 6);
27 return avg;
28 }

Returning arrays from functions

• We’ll have to introduce a symbol we will talk in greater detail about when we discuss pointers
and passing-by-reference. We need to cover this for the homework assignment, but the concept
will be covered later.

• We’ll use the pointer type-qualifer * as a part of the return type to indicate we wish to return an
array.

• Inside of the function, we’ll return the symbol of the arraywithout accessing an element using
an index

4



• Example:

1 //NOTICE: the asterisk (star) next to int indicates we are returning an
array

2 int* add_to_zeroth_element(int arr[], size_t arr_len, int value){
3 // this is just a dummy array operation, in practice you'll do

wonderful and amazing things here
4 arr[0] += value;
5 // NOTICE: return the array, we don't use [] here, just the name of

the array.
6 return arr;
7 }
8
9 int main(){
10 int arr[] = {1,2,3};
11 // notice the type here has to match the return type of the function.

Exactly what's going on here will be covered with pointers.
12 int* result = add_to_zeroth_element(arr, 3, 5);
13 }

Scope

• Lifetime of a variable
• Variables in callee’s are not visible to the caller, and when the callee finishes, all local variables
are freed frommemory (meaning they will not exist in the caller).

Multi-dimensional arrays

• Muti-dimensional arrays are arrays-of-arrays.
• Themost basic multi-dimensional is a 2-dimensional array, which creates a rectangular array.
Each row has the same number of columns.

• To get an int array with 3 rows and 5 columns, we write:

1 int arr[3][5];

• To access/modify a value in the array, we need two subscripts: one for the row we wish to access,
and a second for the column we wish to access:

1 arr[1][3] = 5; // sets the element in the second row and forth column
to 5

5



• We can also initialize a multi-dimensional array in a similar fashion as a single-dimension array
using an initializer list:

1 int two_d[2][3] = {{ 5, 2, 1 },
2 { 6, 7, 8 }};

• The amount of columnsmust be explicitly specified, but the compiler will sort out howmany
rows are needed based on the initializer list. We could have written

1 int two_d[][3] = {{ 5, 2, 1 },
2 { 6, 7, 8 }};

Passingmulti-dimensional arrays to functions

• Exactly the same as passing single-dimension, except wemust specify the number of columns
– Can also specify both rows and columns if you only want a

1 #include <stdio.h>
2 void print_arr(int num[][2]);
3 int main()
4 {
5 const int nr=2, nc=2;
6 int num[nr][nc], i, j;
7 for (i = 0; i < nr; i++)
8 {
9 for (j = 0; j < nc; j++)
10 {
11 printf("element - [%d][%d]: ", i, j);
12 scanf("%d", &num[i][j]);
13 }
14 }
15 // passing multi-dimensional array to function
16 print_arr(num, nr);
17
18 return 0;
19 }
20
21 void print_arr(int num[][2], size_t num_len)
22 {
23 int i, j;
24 for (i = 0; i < num_len; ++i)
25 {

6



26 for (j = 0; j < 2; ++j)
27 {
28 printf("%d ", num[i][j]);
29 }
30 printf("\n");
31 }
32 }

Returningmulti-dimensional arrays from functions

• This is a bit trickier and we will cover this when we cover pointers

Figure 2:Multi-dimensional arrays

Exercises

1. Write a program in C to store 10 elements inputted by the user and write a function to print the
contents of the array.

1 #include <stdio.h>
2

7



3 int main()
4 {
5 int arr[10];
6 int i;
7 printf("\n\nRead and Print elements of an array:\n");
8 printf("-----------------------------------------\n");
9
10 printf("Input 10 elements in the array :\n");
11 for(i=0; i<10; i++)
12 {
13 printf("element - %d : ",i);
14 scanf("%d", &arr[i]);
15 }
16
17 printf("\nElements in array are: ");
18 for(i=0; i<10; i++)
19 {
20 printf("%d ", arr[i]);
21 }
22 printf("\n");
23 }

2. Write a program in C to prompt for the number of elements the user wishes to input (n < 100)
and then prompt for the user to input each element. Then print all unique elements in an array.

1 #include <stdio.h>
2
3 int main()
4 {
5 int arr1[100], n, count_ele = 0;
6 int i, j, k;
7
8 printf("Input the number of elements to be stored in the array (must

be less than 100):");
9 scanf("%d", &n);
10
11 printf("Input %d elements in the array:\n", n);
12 for (i = 0; i < n; i++)
13 {
14 printf("element - %d : ", i);
15 scanf("%d", &arr1[i]);
16 }
17

8



18 /*Checking duplicate elements in the array */
19 printf("\nThe unique elements found in the array are: \n");
20 for (i = 0; i < n; i++)
21 {
22 count_ele = 0;
23
24 /*Check duplicate before the current position and
25 increase counter by 1 if found.*/
26 for (j = i - 1; j >= 0; j--)
27 {
28 /*Increment the counter when the search value is duplicate.*/
29 if (arr1[i] == arr1[j])
30 {
31 count_ele++;
32 }
33 }
34 /*Check duplicate after the current position and increase counter

by 1 if found.*/
35 for (k = i + 1; k < n; k++)
36 {
37 /*Increment the counter when the search value is duplicate.*/
38 if (arr1[i] == arr1[k])
39 {
40 count_ele++;
41 }
42 }
43 /*Print the value of the current position of the array as unique

value
44 when counter remain contains its initial value (zero).*/
45 if (count_ele == 0)
46 {
47 printf("%d ", arr1[i]);
48 }
49 }
50 printf("\n\n");
51 }

3. Write a program in C to store a 2x2 2-dimensional array. Elements are inputted by the user. Print
the matrix and find the sum of rows an columns of the matrix.

1 #include <stdio.h>
2
3 int main()

9



4 {
5 const int n = 2;
6 int i, j, k, arr1[n][n], rsum[n], csum[n];
7
8 printf("Input elements in the 2x2 matrix:\n");
9 for (i = 0; i < n; i++)
10 {
11 for (j = 0; j < n; j++)
12 {
13 printf("element - [%d][%d]: ", i, j);
14 scanf("%d", &arr1[i][j]);
15 }
16 }
17 printf("The matrix is:\n");
18 for (i = 0; i < n; i++)
19 {
20 for (j = 0; j < n; j++)
21 printf("% 4d", arr1[i][j]);
22 printf("\n");
23 }
24
25 /* Sum of rows */
26 for (i = 0; i < n; i++)
27 {
28 rsum[i] = 0;
29 for (j = 0; j < n; j++)
30 rsum[i] = rsum[i] + arr1[i][j];
31 }
32
33 /* Sum of Column */
34 for (i = 0; i < n; i++)
35 {
36 csum[i] = 0;
37 for (j = 0; j < n; j++)
38 csum[i] = csum[i] + arr1[j][i];
39 }
40
41 printf("The sum of the rows the matrix is:\n");
42 for (i = 0; i < n; i++)
43 {
44 printf("% 4d", rsum[i]);
45 printf("\n");
46 }

10



47 printf("\n");
48 printf("The sum of the cols the matrix is: \n");
49 for (j = 0; j < n; j++)
50 {
51 printf("% 4d", csum[j]);
52 }
53 printf("\n\n");
54 }

11


	Arrays
	Declaration and Initialization
	Array Access
	Passing arrays to functions
	Returning arrays from functions
	Scope

	Multi-dimensional arrays
	Passing multi-dimensional arrays to functions
	Returning multi-dimensional arrays from functions


	Exercises

