Arrays

Arrays enabling storing multiple values under a single variable

If multiple values are stored in a single variable, we need a way to access each value
« We access values stored in an array using indices, called subscripts

Values inside of an array are homogeneous, meaning they all have the same type
- Can’t mix ints with floats or vice-versa

Later we will introduce the idea of a pointer, which extend the use of arrays

Declaration and Initialization
« Carrays are declared in the following form
type name[number of elements];
+ type specifies the type of every element in the array (since arrays are homogeneous, we only
specify one type)
+ name is the identifier/variable name we will use to refer to the array

« number of elementsisthe number of type elements that the array can store
+ To declare an array of 6 integers called numbers we would use:

int numbers[6];

« To declare an array of 6 characters called letters we would use:
char letters[6];

+ We can initialize the array when we declare it using curly braces and initialization values using
an initializer list:

int point[6] = {0,3,1,6,7,2};

« Orwe can only initialize the first few elements (this initializes the first 3):
int parital[6] = {1,2};

« We can also omit the size of the array and use the size of the initializer as the size of the array
(this will have space for 6 integers):

int point[] = {0,3,1,6,7,2};




Arraysize=h

Indices — 0 1 2 3 I

Figure 1: C Array

Array Access

Now we know how to declare and initialize and array, but how do we access elements in an
array?
We’ll use an index or subscript to specify which element of the array we want to access
Arrays are 0-indexed in C, meaning the index of the first element in the array is 0, the second
elementin the array is 1, the third is 2, and so forth.
- Important note: the last valid index in an array is the size-1. For instance, in an array of
length 6 (an array that can store 6 elements), the last valid index is 5. 0-5 is 6 numbers.

Example:

int point[6] = {0,3,1,6,7,2};
int thirdEle = point[2]; // arrays are 0-indexed in C, so thirdEle will
have the value of 1

What happens if you access an array with an index is out of the bounds of the array (i.e. use 6 as
anindex to the point array?
- It depends. Sometimes the compiler can catch the error, but it’s not guaranteed to.
- If your program executes, it will be in undefined behavior (UB), which means the rest of your
program’s output is rendered meaningless and unpredicable, even if it outputs the correct
thing




* Undefined behavior is a large and somewhat esoteric definition, but the point is that
C makes zero guarantee about what will happen after you’ve triggered undefined
behavior.
« Examples:

char y;

int z = 9;

char point[6] = { 1, 2, 3, 4, 5, 6 };

//examples of accessing outside the array. A compile error is not
always raised

y = point[15];
y = point[-4];
y = point[z];

« Your program may continue running normally after these cases, but you have entered UB. This
must be avoided at all costs!
« But there’s got to be a better way to make sure we stay within the bounds...
- Well not for every case, but for any type of loop, we can use sizeof () to as the limit on
the number of iterations the loop executes
- Here’s an example:
int 1;
int arr[] = {3, 6, 9, 12, 15};

printf("sizeof(arr): %lu\n", sizeof(arr));
printf("sizeof(int): %lu\n", sizeof(int));

int arr_len = sizeof(arr) / sizeof(int);
printf("array is length %d\n", arr_len);
for (i = 0; i < arr_len; ++1)

{
printf("arr[%d]: %d\n", i, arr[i]);

« Thisis a great way to ensure you stay within the bounds of the array!

Passing arrays to functions

« To pass an array to a function, we’ll pass the name of the variable of the array.




« However, in the function signature, we must tell the compiler we are passing an array:

#include <stdio.h>

// [] after the variable name -indicates the variable is an array
float average(float arr[], size_t arr_len);

int main()

{
float avg;
float arr[] = { 23.4, 55, 22.6, 3, 40.5, 18 };
int arr_len = sizeof(arr) / sizeof(float);
avg = average(arr, arr_len); /x Only name of array is passed as
argument. x/
printf("Average age=%.2f", avg);
return 0O;
}

// [] after the variable name -indicates the variable is an array
float average(float arr[], size_t arr_len)

{
int i;
float avg, sum = 0.0;
for (i = 0; i < arr_len; ++i) {
sum += arr[i];
}
avg = (sum / 6);
return avg;
}

Returning arrays from functions

« We’ll have to introduce a symbol we will talk in greater detail about when we discuss pointers
and passing-by-reference. We need to cover this for the homework assignment, but the concept
will be covered later.

« We'll use the pointer type-qualifer * as a part of the return type to indicate we wish to return an
array.

« Inside of the function, we’ll return the symbol of the array without accessing an element using
anindex




« Example:

//NOTICE: the asterisk (star) next to int indicates we are returning an
array
intx add_to_zeroth_element(int arr[], size_t arr_len, int value){
// this ds just a dummy array operation, in practice you'll do
wonderful and amazing things here
arr[0] += value;
// NOTICE: return the array, we don't use [] here, just the name of
the array.
return arr;

int main(){
int arr[] = {1,2,3};
// notice the type here has to match the return type of the function.
Exactly what's going on here will be covered with pointers.
intx result = add_to_zeroth_element(arr, 3, 5);

Scope

« Lifetime of a variable
« Variables in callee’s are not visible to the caller, and when the callee finishes, all local variables
are freed from memory (meaning they will not exist in the caller).

Multi-dimensional arrays

« Muti-dimensional arrays are arrays-of-arrays.

+ The most basic multi-dimensional is a 2-dimensional array, which creates a rectangular array.
Each row has the same number of columns.

« To get an int array with 3 rows and 5 columns, we write:

int arr[3][5];
« To access/modify a value in the array, we need two subscripts: one for the row we wish to access,
and a second for the column we wish to access:

arr[1][3] = 5; // sets the element in the second row and forth column
to 5




« We can also initialize a multi-dimensional array in a similar fashion as a single-dimension array
using an initializer list:

int two_d[2][3] = {{ 5, 2, 1 },
7

{5
{6, 7, 81}
« The amount of columns must be explicitly specified, but the compiler will sort out how many

rows are needed based on the initializer list. We could have written

int two_d[][3] = {{
{

Passing multi-dimensional arrays to functions

+ Exactly the same as passing single-dimension, except we must specify the number of columns
- Can also specify both rows and columns if you only want a

#include <stdio.h>
void print_arr(int num[][2]);
int main()
{
const 1int nr=2, nc=2;
int num[nr][nc], i, Jj;
for (i = 0; i < nrj fi++)
{
for (j = 0; j < nc; j++)
{
printf("element - [%d][%d]: ", i, j);
scanf ("%d", &num[i][j]);

}
// passing multi-dimensional array to function
print_arr(num, nr);

return 0;
}
void print_arr(int num[][2], size_t num_len)
{

int i, j;

for (i = 0; i < num_len; ++1)

{




26 for (3 = 05 J < 2;5 ++3)

27 {

o printf mosd ", num[ﬂ[J]);
29 X

30 printf("\n");

31 }

32 }

Returning multi-dimensional arrays from functions

« This is a bit trickier and we will cover this when we cover pointers

al[0][0] a[0][1] al0lI[Z2] af[0]1[3]

al[l] [0] = b B Bl SEEEE2] al[l][3]

al2][0] al[2] [1] a[2][2] af[2] [3]

Figure 2: Multi-dimensional arrays

Exercises

1. Write a program in C to store 10 elements inputted by the user and write a function to print the
contents of the array.

‘ #include <stdio.h>

1
I




int main()
{
int arr[10];
int i;
printf("\n\nRead and Print elements of an array:\n");
printf("---—-———----------—— \n");

printf("Input 10 elements 1in the array :\n");
for (i=0; 1<10; i++)
{

printf("element - %d : ",1i);

scanf ("%d", &arr[i]);

printf("\nElements in array are: ");
for(i=0; 1<10; i++)

{

printf("%d ", arr[i]);
}
printf("\n");

2. Write a program in C to prompt for the number of elements the user wishes to input (n <100)
and then prompt for the user to input each element. Then print all unique elements in an array.

#include <stdio.h>

int main()

{
int arrl[100], n, count_ele = 0;
int i, j, k;

printf("Input the number of elements to be stored in the array (must
be less than 100):");
scanf("%d", &n);

printf("Input %d elements in the array:\n", n);
for (i = 0; i < n; i++)
{

printf("element - %d : ", 1i);

scanf("%d", &arrl[i]);




18 /*Checking duplicate elements in the array */
19 printf("\nThe unique elements found in the array are: \n");
20 for (i = 0; i < nj d++)
21 {
22 count_ele = 0;
23
24 /*Check duplicate before the current position and
25 increase counter by 1 if found.x/
26 for (j =1 - 1; j >= 0; j--)
27 {
28 /*Increment the counter when the search value 1is duplicate.x*/
29 if (arrl[i] == arrl[j])
30 {
31 count_ele++;
32 }
33 }
34 /*Check duplicate after the current position and increase counter
by 1 if found.x/
35 for (k = i + 1; k < n; kt+)
36 {
37 /*Increment the counter when the search value 1is duplicate.x*/
38 if (arrl[i] == arrl[k])
39 {
40 count_ele++;
41 }
42 }
43 /*Print the value of the current position of the array as unique
va'lue
44 when counter remain contains 1its initial value (zero).x/
45 if (count_ele == 0)
46 {
47 printf("%d ", arrl[i]);
48 }
49 }
50 printf("\n\n");
51 }
3. Write a program in C to store a 2x2 2-dimensional array. Elements are inputted by the user. Print
the matrix and find the sum of rows an columns of the matrix.
‘ 1 #include <stdio.h>
E:

int main()




const int n = 2;
int i, j, k, arrl[n][n], rsum[n], csum[n];

printf("Input elements in the 2x2 matrix:\n");
for (i = 0; i < nj; "i++)
{
for (j = 05 j < nj j++)
{
printf("element - [%d][%d]: ", i, j);
scanf("%d", &arri[i][j]);

}
printf("The matrix is:\n");
for (i = 0; 1 < n; i++)
{
for (j = 05 j < nj j++)
printf ("% 4d", arrl[i][j]1);
printf("\n");

/* Sum of rows x/
for (i = 0; 1 < n; 7i++)
{
rsum[i] = 0;
for (J = 0; J < n; j++)
rsum[i] = rsum[i] + arrl[i][j];

/* Sum of Column */
for (i = 0; i < nj; i++)
{
csum[i] = 0;
for (j = 0; j < n; j++)
csum[i] = csum[i] + arrl[j][i];

printf("The sum of the rows the matrix is:\n");
for (i = 0; i < nj; i++)
{

printf ("% 4d", rsum[i]);

printf("\n");

10



47
48
49
50
51
52
53
54

printf("\n");

printf("The sum of the cols the matrix qs:

for (j = 05 j < n; j++)
{
PrintR(ts 4dt, esump3l);
}
printf("\n\n");

\n");

n




	Arrays
	Declaration and Initialization
	Array Access
	Passing arrays to functions
	Returning arrays from functions
	Scope

	Multi-dimensional arrays
	Passing multi-dimensional arrays to functions
	Returning multi-dimensional arrays from functions


	Exercises

