
Procedures & Functions

• All executable code resides within a function
• So far, the only function we have written is calledmain, which served as the entry point for our
programs.

• A function is a named block of code that performs a task and then returns control to a caller.
– The caller is the function that invoked the function
– The callee is the function being invoked
– You can think of the caller as the “parent” to the callee

• Because a function is just a block of code, we can call it multiple times throughout a program’s
execution

• A�er finishing, the function will branch back (return) to the caller.
• Consider this trivial example:

– Suppose you want to print out the first 5 squares of numbers, do some processing, then
print out the first 5 squares again. So far, wemay write something like:

1 #include <stdio.h>
2
3 int main(void)
4 {
5 int i;
6 for(i=1; i <= 5; i++)
7 {
8 printf("%d ", i*i);
9 }
10 // amazing things
11 for(i=1; i <= 5; i++)
12 {
13 printf("%d ", i*i);
14 }
15 return 0;
16 }

• We wrote the same loop twice!
– This is bad.
– If wewant tomodify this code, to say print the first 5 cubes of numbers, we’d have to change
code in two places

– If we write a function to print the first 5 squares of numbers and call that function twice:

1 #include <stdio.h>
2

1

3 void print_squares(void)
4 {
5 int i;
6 for(i=1; i <=5; i++)
7 {
8 printf("%d ", i*i);
9 }
10 }
11
12 int main(void)
13 {
14 print_squares();
15 // amazing things
16 print_squares();
17 return 0;
18 }

Functions

• Functions operate as black boxes, meaning they take input (parameters/arguments), do some-
thing with the input (function body), and spit out the answer (return value)
– A function may not require any input at all (like our example above) and it may not return
anything (like our example above - printing is not a form of returning).

• Terminology:
– A function f that uses another function g is said to call g (i.e. f is the caller of g). * A function’s
inputs are known as its arguments (or parameters).

– A function g that gives some kind of data back to the caller f is said to return that data.
• Let’s look at a function to square the input of an integer:

1 // the first int indicates that this function will return an integer to
the caller

2 // square is the name of the function
3 // everything inside of the () are the function's arguments
4 // int x specifies a single argument named x of type int
5 int square(int x)
6 {
7 // function body start
8 int square_of_x;
9 square_of_x = x * x;
10 // return indicates what variable's value we return to the caller
11 return square_of_x;

2

12 }

• A much simpler implementation:

1 int square(int x)
2 {
3 return x * x;
4 }

Function Syntax

• Functions take the form:

1 type name(type1 arg1, type2 arg2, ...)
2 {
3 /* function body code */
4 }

• type is the return type of the function
– Could be int, float, etc
– Can be void to indicate no return value

* When a function is void type, you do not place a return in the function body
* Example void function

1 void print_hello(int number_of_times)
2 {
3 int i;
4 for(i=1; i <= number_of_times; i++) {
5 printf("Hello!\n");
6 }
7 }

• What about a function that takes no arguments?

1 float calculate_number() // or you can explicitly place void as the
argument -> e.g. (void)

2 {
3 float result=1;
4 int i;
5 for(i=0; i < 100; i++) {
6 result += 1;
7 result = 1/result;

3

8 }
9 return result;
10 }

Function declarations

• A function declaration tells the compiler about a function’s name, return type, and parameters.
• So far, we have looked at function definitions, which provide the actual code a function will
execute.

• We can declare a function without defining it (similar to declaring a variable without initializing
it)

• Function declarations take the following form:

1 type function_name(type1 arg1, type2 arg2);

• Notice the semicolon at the end - this is a statement in C
• Why bother with this?

– Function declarations typically exist in header files (.h), and their corresponding definitions
exist in a .c file of the same name

– For instance,wehavebeenwriting#include <stdio.h>, which includes the stdioheader
– Many times people put main() at the top of their program, so a fellow programmer can
see the program’s entry point first
* But a compiler reads a program top-to-bottom, so if you reference a function before
the compiler is aware of its existence, the compiler won’t knowwhat to do (we’ll see
an example of this in a second)

– But even formore complex programs, it’s nice to see all of the functions in one area without
having to scroll through every definition. Provides an overview of the functions available.

• Look back at our print_squares example. print_squares is before main. Let’s try to move
it a�er main:

1 #include <stdio.h>
2
3 int main(void)
4 {
5 print_squares();
6 // amazing things
7 print_squares();
8 return 0;
9 }
10

4

11 void print_squares(void)
12 {
13 int i;
14 for(i=1; i <=5; i++)
15 {
16 printf("%d ", i*i);
17 }
18 }

• We’ll get a compiler error when we try to build this. Why?
– When the compiler reads line 5, it has no idea what print_squares is. Function declara-
tions let us tell the compiler: “This function will be defined later. When the linker executes
(third stage of compilation), this function will be defined, compiled, and ready for linking”

• Let’s add a function declaration to fix:

1 #include <stdio.h>
2
3 void print_squares(void);
4
5 int main(void)
6 {
7 print_squares();
8 // amazing things
9 print_squares();
10 return 0;
11 }
12
13 void print_squares(void)
14 {
15 int i;
16 for(i=1; i <=5; i++)
17 {
18 printf("%d ", i*i);
19 }
20 }

• It builds! The compiler is aware that print_squares is a function and will be defined later.

Static functions

• Static functions can only be called from the file in which they were written

5

• This helps protect functionality frombeing available in other files. Essentiallymakes the function
private to this particular file

• Example:

1 static int less_than(int a, int b)
2 {
3 return (a < b)? a : b;
4 }

Calling functions

• Say we wanted to call the calculate_number function.
• Remember this function takes no arguments and returns a float
• We would write:

1 float f;
2 f = calculate_number();

• If you do not assign the return value to a variable, the return value is discarded (will not error).
• What if the function takes arguments?

1 int square_of_10;
2 square_of_10 = square(10);

• We can also pass appropriately (correctly) typed variables instead of literals

1 int square_of_x;
2 int x = 10;
3 square_of_x = square(x);

• C will attempt to type cast whatever you pass into the appropriate type.
– For instance, if you pass a floating point number for an int argument, the floating point
number will be type cast into an int

• If the function doesn’t return anything, simply call the function

1 print_hello();

Functions from the C Standard Library

• Wide range of functions already written for you!

6

• No need to reinvent the wheel
• These exist to make your life easier
• https://en.wikibooks.org/wiki/C_Programming/Procedures_and_functions#Functions_from_
the_C_Standard_Library

Variable-length Argument Lists

• Functions don’t have to specify exactly howmany arguments they take
• For instance, imagine you wanted to write a function to compute the average of a set of numbers.

– So far, we have no way of handling N numbers.
– We could write a function for averaging 2 numbers, 3 numbers, etc, but that would be very
painstaking.

• Where have we seen functions that take in an arbitrary number of arguments already?
– printf
– scanf

• In order towrite a function that takes a variable number of arguments, first include thestdarg.h
header

Steps:

1. Declare the function as you normally would
2. Last argument to the function is an ellipsis ... to indicate there is a variable list of arguments

• Example function declaration:

1 float average (int n_args, ...);

• Somehowwe need to specify howmany arguments are in the list.
• Above we did this with the n_args argument
• Next, we need amechanism to access the list of arguments. We’ll declare a variable for the list of
arguments:

1 va_list myList;

• Notice the type here, va_list. This type is provided by stdargs.h
• To actually use myList, we must assign it a value. The va_startmacro (similar to a function
for now)
– The va_startmacro takes two arguments:

1. The va_list you plan on storing values in
2. The name of the last variable appearing before the ellipsis

7

https://en.wikibooks.org/wiki/C_Programming/Procedures_and_functions#Functions_from_the_C_Standard_Library
https://en.wikibooks.org/wiki/C_Programming/Procedures_and_functions#Functions_from_the_C_Standard_Library

1 #include <stdarg.h>
2 float average (int n_args, ...)
3 {
4 va_list myList;
5 va_start (myList, n_args);
6 va_end (myList);
7 }

• Now we have done all of the setup required to use the list
• Toactually accessavalue in this list,weuse theva_argmacro,which ‘pops’ o� thenext argument
in the list
– In the va_argmarco, you provide:

1. The va_list variable to pop the value from (e.g. myList)
2. The type of the variable being extracted

1 #include <stdarg.h>
2 float average (int n_args, ...)
3 {
4 va_list myList;
5 va_start (myList, n_args);
6
7 int myNumber = va_arg (myList, int);
8 va_end (myList);
9 }

• By popping n_args integers o� the variable-length argument list, we can find the average of all
numbers:

1 #include <stdarg.h>
2
3 float average (int n_args, ...)
4 {
5 va_list myList;
6 va_start (myList, n_args);
7
8 int numbersAdded = 0;
9 int sum = 0;
10
11 while (numbersAdded < n_args) {
12 int number = va_arg (myList, int); // Get next number from list
13 sum += number;
14 numbersAdded += 1;

8

15 }
16 va_end (myList);
17
18 float avg = (float)(sum) / (float)(numbersAdded); // Find the

average
19 return avg;
20 }
21
22 int main(){
23 float avg = average(2, 10, 20);
24 }

• If we call this function with 2, 10, and 30, we get the average of 10 and 20, which is 25:
– average(2, 10, 20);

Exercises

1. What is the e�ect of calling show(4)?

1 int show(int x) {
2 printf("%d %d\n", x, x*x);
3 return x*x;
4 printf("%d %d\n", x, x*x*x);
5 return x*x*x;
6 }

2. What does the following C function do?

1 int eq3(int a, int b, int c) {
2 if ((a == b) && (a == c))
3 return 1;
4 else
5 return 0;
6 }

3. Write a C function that takes a real number as an argument and returns the absolute value of
that number.

1 #include <stdio.h>
2
3 float absolute(float n){
4 if (n < 0.0){

9

5 return -n;
6 } else{
7 return n;
8 }
9 }
10
11 int main(){
12 float abs1 = absolute(5.5);
13 float abs2 = absolute(-10.2);
14 printf("5.5 is %f, -10.2 is %f\n", abs1, abs2);
15 }

4. Write a C function that takes in N integers as arguments and returns the value of the largest one.

1 #include <stdio.h>
2 #include <limits.h>
3 #include <stdarg.h>
4
5 int find_largest(int n_args, ...){
6 va_list numbers;
7 va_start (numbers, n_args);
8
9 int largest = -2500000; // should use INT_MIN from limits.h instead
10 int num_processed = 0;
11 while (num_processed < n_args){
12 int number = va_arg(numbers, int);
13 if (number > largest){
14 largest = number;
15 }
16 num_processed++;
17 }
18 va_end(numbers);
19 return largest;
20 }
21
22 int main(){
23 int largest = find_largest(4, -10, 30, 40, 50);
24 printf("The largest number is %d\n", largest);
25 }

5. Write a C function to calculate a total cost of a meal. The function should take in a base cost, the
tip percentage as a decimal, and a tax percentage as a decimal. The function should return the
total cost of the meal.

10

1 #include <stdio.h>
2 #include <math.h>
3
4 float tip_calculator(float base, float tip_pct, float tax_pct){
5 float total = base + base * tip_pct + base * tax_pct;
6 return total;
7 }
8
9 int main(){
10 float total = tip_calculator(35.6, 0.2, 0.01);
11 total = roundf(total * 100) / 100;
12 printf("Total is %.2f\n", total);
13 }

11

	Procedures & Functions
	Functions
	Function Syntax
	Function declarations
	Static functions

	Calling functions
	Functions from the C Standard Library
	Variable-length Argument Lists
	Steps:

	Exercises

