
Looping

• Loops enable programmers to tell the computer to repeat a particular block of codemultiple
times.
– Is is generally impractical to use conditionals a large number of times.

• Consider how a dishwasher might describe their time at work.
– Unlikely the dishwasher would say “I watch a dish, and then another dish, and then another
dish,”

– More like they would say “I washed dishes the entire time I was at work”

While Loops

• A while loop is the most basic type of loop.
• while loops run until a specific controlling condition is not satisfied (i.e. false).

– The controlling condition is checked before the loop executes and every time the loop
loops.

• Syntax:

1 while(condition){
2 //loop body
3 }

• Basic example:

1 int a = 1;
2 while (a < 100) {
3 printf("a is %d \n", a);
4 a = a * 2;
5 }

• Howmany times will this loop execute?
– 7, last time this executes a is set to 128 at the end of the loop

• A critical note: somethingmust change in the loop such that the condition is eventually false
and the loop exits
– Otherwise, this is called an infinite loop.

• Consider the following:

1 int a = 1;
2 while (42) {
3 a = a * 2;
4 }

1

• The controlling condition in the while never changes, and therefore will run forever (since 42
evaluates to true).

• break and continue
– Allows you to control the flow of the loop fromwithin the loop
– breakwill immediately exit the loop
– continue will skip the remainder of the block and start at the controlling conditional
statement again.

1 int a = 1;
2 while (42) { // loops until the break statement in the loop is executed
3 printf("a is %d ", a);
4 a = a * 2;
5 if (a > 100) {
6 break;
7 } else if (a == 64) {
8 continue; // Immediately restarts at while, skips next step
9 }
10 printf("a is not 64\n");
11 }

• Similar to if, you may omit the braces for the block of code associated with the while loop
– However, this is not recommended for the same reasons as with an if statement
– Grouping of statements is potentially ambiguous (to the programmer, not the computer)
that can lead to bugs

1 int a = 1;
2 while (a < 100)
3 a = a * 2;

• This will just increase a until it is above 100
• When a loop ends, the program goes back to the while statement’s controlling condition.

– If the condition is true, the loop executes again
– If the condition is false, the loop exits
– The computer does not continuously check the controlling condition a�er each statement
in the loop executes. It only checks at the end of every loop

– If you need to end the loop during the middle of the loop’s block, use a break to check for
the necessary conditions

For Loops

• Functionally equivalent to a while loop, but people find them to bemore readable/maintainable.

2

• Typically in awhile, you’d put some code tomodify the controlling condition as the last statement
to the while loop (increment, decrement, etc)
– A for loopmoves this to the definition of the loop

• Syntax:

1 for (initialization; controlling condition; loop-ending statement) {
2 /* code */
3 }

• The initialization statement is executed once - at the beginning of the loop
– Typically, you would assign some variable to be a particular value in this loop section

• The controlling condition is the test executed to determine whether or not the loop should run
again.
– It is checked when the loop starts.

• The loop-ending statement is typically a form of incrementing/decrementing a value.
– This statement is executed at the end of every loop statement, but before the controlling
condition is checked

– If you used a continue statement, this statement is also executed (i.e. it is not skipped
because of the use of a continue).

• Any of these may be omitted.
– You do not have to run an initialization statement
– You do not have to provide a controlling condition

* What must you do to make sure your loop terminates if this is omitted?
– You do not have to provide a loop ending statement

* What must you do to make sure your loop terminates if this is omitted?
• Counting example:

1 int i;
2 for (i = 1; i <= 10; i++) {
3 printf("%d ", i);
4 }

• A for loop can be given no conditions:

1 for (;;) {
2 /* block of statements */
3 }

• This is an infinite loop because it will loop forever unless there is a break statement in the block
for the loop

3

• Youmay also use the comma operator to addmultiple statements inside the loop:

1 int i, j, n = 10;
2 for (i = 0, j = 0; i <= n; i++, j += 2) {
3 printf("i = %d , j = %d \n", i, j);
4 }

Do-While Loops

• The do-while loop is the same as a while loop, except the loop controlling condition is checked
at the end of the loop rather than at the beginning

• Means the loop is guaranteed to execute at least one time.
• Syntax:

1 do {
2 /* do stuff */
3 } while (condition);

• Note: he terminating ; is required.
• break and continue operate the same as with other loops (the controlling condition will still
be checked before executing the loop body again when using continue

Exercises

1. Write a C program to find the sum of first 10 natural numbers.

1 #include <stdio.h>
2 void main()
3 {
4 int j, sum = 0;
5
6 printf("The first 10 natural number is :\n");
7
8 for (j = 1; j <= 10; j++)
9 {
10 sum = sum + j;
11 printf("%d ",j);
12 }
13 printf("\nThe Sum is : %d\n", sum);
14 }

4

2. Write a program in C to read 10 numbers from keyboard and find their sum and average.

1 #include <stdio.h>
2 void main()
3 {
4 int i,n,sum=0;
5 float avg;
6 printf("Input the 10 numbers : \n");
7 for (i=1;i<=10;i++)
8 {
9 printf("Number-%d :",i);
10
11 scanf("%d",&n);
12 sum +=n;
13 }
14 avg=sum/10.0;
15 printf("The sum of 10 no is : %d\nThe Average is : %f\n",sum,avg);
16
17 }

• How can we generalize this to allow the user to input a variable amount of numbers?

3. Write a program in C to display the pattern like right angle triangle using an asterisk.

1 #include <stdio.h>
2 void main()
3 {
4 int i,j,rows;
5 printf("Input number of rows : ");
6 scanf("%d",&rows);
7 for(i=1;i<=rows;i++)
8 {
9 for(j=1;j<=i;j++)
10 {
11 printf("*");
12 }
13 printf("\n");
14 }
15 }

4. Write a C program to determine if a inputted integer is a palindrome

1 #include <stdio.h>
2

5

3 int main()
4 {
5 int n, num, digit, rev = 0;
6
7 printf("Enter a positive number: ");
8 scanf("%d", &num);
9
10 n = num;
11
12 do
13 {
14 digit = num % 10;
15 rev = (rev * 10) + digit;
16 num = num / 10;
17 } while (num != 0);
18
19 printf("The reverse of the number is: %d\n", rev);
20
21 if (n == rev)
22 printf("The number is a palindrome\n");
23 else
24 printf("The number is not a palindrome\n");
25
26 return 0;
27 }

6

	Looping
	While Loops
	For Loops
	Do-While Loops
	Exercises

