Looping

Loops enable programmers to tell the computer to repeat a particular block of code multiple
times.
- Isis generally impractical to use conditionals a large number of times.
Consider how a dishwasher might describe their time at work.
- Unlikely the dishwasher would say “l watch a dish, and then another dish, and then another
dish,...”
- More like they would say “l washed dishes the entire time | was at work”

While Loops

A while loop is the most basic type of loop.
wh1ile loops run until a specific controlling condition is not satisfied (i.e. false).
- The controlling condition is checked before the loop executes and every time the loop
loops.
Syntax:

while(condition){

Basic example:

int a = 1;

while (a < 100) {
printf("a is %d \n", a);
a = a *x 2;

}

How many times will this loop execute?
- 7, last time this executes a is set to 128 at the end of the loop
A critical note: something must change in the loop such that the condition is eventually false
and the loop exits
- Otherwise, this is called an infinite loop.
Consider the following:

int a = 1;
while (42) {
a = a *x 2;




« The controlling condition in the while never changes, and therefore will run forever (since 42
evaluates to true).
« break and continue
- Allows you to control the flow of the loop from within the loop
- break will immediately exit the loop
- continue will skip the remainder of the block and start at the controlling conditional
statement again.

int a = 1;
while (42) { // loops until the break statement in the loop is executed
printf("a is %d ", a);
a = a x 2;
if (a > 100) {
break;
} else if (a == 64) {
continue; // Immediately restarts at while, skips next step

}
printf("a is not 64\n");

« Similar to i, you may omit the braces for the block of code associated with the while loop
- However, this is not recommended for the same reasons as with an 1 f statement
- Grouping of statements is potentially ambiguous (to the programmer, not the computer)
that can lead to bugs

int a = 1;
while (a < 100)
a = a *x 2;

+ This will just increase a until it is above 100
+ When a loop ends, the program goes back to the while statement’s controlling condition.

If the condition is true, the loop executes again

If the condition is false, the loop exits

The computer does not continuously check the controlling condition after each statement
in the loop executes. It only checks at the end of every loop

If you need to end the loop during the middle of the loop’s block, use a break to check for
the necessary conditions

For Loops

+ Functionally equivalent to a while loop, but people find them to be more readable/maintainable.




Typically in a while, you'd put some code to modify the controlling condition as the last statement
to the while loop (increment, decrement, etc)

- Afor loop moves this to the definition of the loop
Syntax:

for (initialization; controlling condition; loop-ending statement) {

The initialization statement is executed once - at the beginning of the loop

- Typically, you would assign some variable to be a particular value in this loop section
The controlling condition is the test executed to determine whether or not the loop should run
again.

- Itis checked when the loop starts.
The loop-ending statement is typically a form of incrementing/decrementing a value.

- This statement is executed at the end of every loop statement, but before the controlling

condition is checked
- If you used a continue statement, this statement is also executed (i.e. it is not skipped
because of the use of a continue).

Any of these may be omitted.

- You do not have to run an initialization statement

- You do not have to provide a controlling condition

* What must you do to make sure your loop terminates if this is omitted?
- You do not have to provide a loop ending statement
* What must you do to make sure your loop terminates if this is omitted?

Counting example:
int i;
for (i = 1; i <= 10; i++) {

printf("%d ", 1i);

A for loop can be given no conditions:

for (53) {

This is an infinite loop because it will loop forever unless there is a break statement in the block
for the loop




You may also use the comma operator to add multiple statements inside the loop:

int i, j, n
for (i = 0,
printf ("4

10;
=05 1 <= nj i+, 4= 2) |
% , j = %d \n", i, j);

I .

Do-While Loops

The do-while loop is the same as a while loop, except the loop controlling condition is checked
at the end of the loop rather than at the beginning

Means the loop is guaranteed to execute at least one time.

Syntax:

do {
/* do stuff %/
} while (condition);

Note: he terminating ; is required.
break and continue operate the same as with other loops (the controlling condition will still
be checked before executing the loop body again when using continue

Exercises

1.

Write a C program to find the sum of first 10 natural numbers.

#include <stdio.h>
void main()

{

int j, sum = 0;
printf("The first 10 natural number is :\n");

for (j = 1; j <= 10; j++)
{
sum = sum + j;
printf("%d ",j);
}
printf("\nThe Sum is : %d\n", sum);




2. Write a program in C to read 10 numbers from keyboard and find their sum and average.

#include <stdio.h>
void main()
{
int i,n,sum=0;
float avg;
printf("Input the 10 numbers : \n");
for (i=1;i<=10;1i++)

{

printf("Number-%d :",i);
scanf ("%d",&n) ;
sum +=n;

}

avg=sum/10.0;
printf("The sum of 10 no is : %d\nThe Average is : %f\n",sum,avg);

+ How can we generalize this to allow the user to input a variable amount of numbers?

3. Write a program in C to display the pattern like right angle triangle using an asterisk.

#include <stdio.h>

void main()

{
int i,j,rows;
printf("Input number of rows : ");
scanf ("%d" ,&rows) ;
for(i=1;i<=rows;i++)

{
for(j=1;j<=1;j++)
{
printf("x");
}
printf("\n");
}

4. Write a C program to determine if a inputted integer is a palindrome

#include <stdio.h>




int main()

{

int n, num, digit, rev = 0;

printf("Enter a positive number: ");
scanf ("%d", &num);

n = num;
do
digit = num % 10;
rev = (rev x 10) + digit;
num = num / 10;
} while (num != 0);
printf("The reverse of the number is: %d\n", rev);
if (n == rev)
printf("The number is a palindrome\n");
else

printf("The number is not a palindrome\n");

return 0;




	Looping
	While Loops
	For Loops
	Do-While Loops
	Exercises


