
Expressions & Conditionals

Operators

• C has many built-in operators
• We discussed the basic operators in the previous unit, but here will review and expand on those
operators

• Basic operators include:
– + addition
– - subtraction
– *multiplication
– / division (floating point and integer division depending upon type)
– %modulo (remainder division)

Increment and decrement

• Adding 1 to a variable is so common, we have a custom operator for it
• We have three methods of incrementing (the same is true for decrement) variables in C
• Using addition (not technically an increment operator):

1 a = a + 1; //

• Using the prefix increment operator

1 ++a;

• Using the postfix increment operator

1 a++;

• What’s the di�erence between these two statements?
– A lot of the time, there is no di�erence in practice
– HOWEVER
– The semantics are technically di�erent
– How are they di�erent?

* ++a increments a and then returns the value of a (meaning the value returned has
already been incremented)

* a++ returns the value of a and then increments a (meaning the value returned has not
yet been incremented)

– When does this matter?

1

* Two cases:

1 int a = 5;
2 int b = 5;
3 int c = ++a; // c has the value of 6 after this executes, a has the

value of 6
4 int d = a++; // d has the value of 5 after this executes, a has the

value of 6

• All of the above also applies for the decrement operator --, which subtracts 1 from a variable
instead of adding one

Relational and Equality Operators

• Relational and equality operators return boolean values (booleanmeaning true or false)
• Relational operators

– < less than
– > greater than
– <= less than or equal to
– >= greater than or equal to

• Equality operators
– == equals
– != not equals

Unary Operators

• Unary means it only acts on a single variable (whereas so far other operators have acted on two
variables/values)

• Unary operators
– & address-of (gets the memory address of a variable)
– * contents-of (gets the contents stored in a memory address)
– - negation
– + plus
– ! logical negation
– (type) type casting

* Type casting allows us to convert one variable type into another type
* Notice that this does not round, it truncates
* For instance, common use is to typecase a floating point number into an integer:

1 int b = (int)3.5; // 3.5 will be truncated to 3

2

Logical Operators

• ! logical negation
• && logical AND
• || logical OR

Precedence

• 1 (highest)
– ++/--Postfix increment and decrement
– ()Function calls
– [] Array subscripting
– . structure/union access
– -> structure/union member access through pointer

• 2 (second highest)
– ++/-- Prefix increment and decrement
– +/- unary plus andminus
– ! logical not
– (type) type casting
– * dereference
– & address-of

• 3 (third highest)
– *multiplication
– / division
– % remainder division

• 4 (forth highest)
– + addition
– - subtraction

• 5 (fi�h highest)
– < less than
– > greater than
– <= less than or equal to
– >= greater than or equal to

• 6 (sixth highest)
– == equal
– != not equal

• 7 (seventh highest)
– && logical AND

3

• 8 (eighth highest)
– || logical OR

• 9 (ninth highest)
– ?: ternary conditional

• 10 (tenth highest)
– = assignment (and all other forms of assignment, +=, -=, *=, /=, %=)

• 11 (eleventh highest)
– , comma (for creating multiple variables)

calculations.c

1 /*
2 Let's try writing some calculations...
3 */
4 #include <stdio.h>
5
6 int main() {
7 float value1 = 0.0, value2 = 0.0;
8 int i1 = 0, i2 = 0;
9
10 /*
11 Prompt for values
12 -/
13 printf("\t\tCalculation Program\n\n");
14 printf("Please enter two values: ");
15 scanf("%f %f", &value1, &value2);
16
17 printf("Their sum: %f\n", value1 + value2);
18 printf("Their product: %f\n", value1 * value2);
19 printf("The first minus the second: %f\n", value1 - value2);
20 printf("The second minus the first: %f\n", value2 - value1);
21 printf("The first divided by the second: %f\n", value1 / value2);
22 printf("The second divided by the first: %f\n", value2 / value1);
23
24 printf("Let's try again, as if the values were int\n");
25 i1 = (int) value1;
26 i2 = (int) value2;
27 printf("Their sum: %d\n", i1 + i2);
28 printf("Their product: %d\n", i1 * i2);
29 printf("The first minus the second: %d\n", i1 - i2);
30 printf("The second minus the first: %d\n", i2 - i1);

4

31 printf("The first divided by the second: %d\n", i1 / i2);
32 /*
33 Just for the record, the modulus operator is only
34 defined on int parameters...
35 -/
36 printf("The modulus of the first by the second: %d\n", i1 % i2);
37 printf("The second divided by the first: %d\n", i2 / i1);
38 printf("The modulus of the second by the first: %d\n", i2 % i1);
39 return(0);
40 }

Conditionals

• There is no meaningful program that doesn’t demonstrate some basic decision-making skills
• For instance, “I will continue driving through the intersection” is not a statement a human would
act upon. But “I will stop if the light is red, go if the light is green, go only if I can safely pass if the
light is yellow” might be a reasonable driving policy.

• A conditional tells the computer to only execute a block of code if a particular condition has been
satisfied (i.e. that condition is true).

• if...else is the most common conditional statement
• switch...case are used as a shorthand version of if...else
• In C, logic is a form of arithmetic

– 0 represents false
– any other value represents true
– Logical and arithmetic operators are treated as the same thing in C

selection.c

1 /*
2 Let's try writing some conditional logic...
3 -/
4 #include <stdio.h>
5
6 int main() {
7 float value1 = 0.0, value2 = 0.0;
8 /*
9 Prompt for values
10 -/
11 printf("\t\tConditional Logic Program\n\n");
12 printf("Please enter two values: ");

5

13 scanf("%f %f", &value1, &value2);
14
15 if (value1 < value2) {
16 printf("value1 is less than value2\n");
17 }
18 if (value1 > value2) {
19 printf("value1 is greater than value2\n");
20 }
21 if (value1 <= value2) {
22 printf("value1 is less than or equal value2\n");
23 }
24 if (value1 >= value2) {
25 printf("value1 is greater than or equal value2\n");
26 }
27 if (value1 == value2) {
28 printf("value1 equals value2\n");
29 }
30 if (value1 != value2) {
31 printf("value1 does not equals value2\n");
32 }
33 /*
34 Just for the record, due to rounding errors, it
35 is very dangerous to test for equality on floating
36 point numbers
37 -/
38 return(0);
39 }

Relational Expressions

• Consider the following relational and equivalence operations

1 a < b // 1 if a is less than b, 0 otherwise
2 a > b // 1 if a is greater than b, 0 otherwise
3 a <= b // 1 if a is less than or equal to b, 0 otherwise
4 a >= b // 1 if a is greater than or equal to b, 0 otherwise
5 a == b // 1 if a is equal to b, 0 otherwise
6 a != b // 1 if a is not equal to b, 0 otherwise

• Please remember = is for assignment and == is for equality
• C does not have a dedicated boolean type that many programming languages have. Instead,
integers represent booleans.

6

– 0means false
– anything else means true

• Our two examples of conditionals are equivalent:

1 if (foo()) {
2 // do something
3 }
4 if (foo() != 0) {
5 // do something
6 }

Logical Expressions

• A way to evaluate operations over logical values (i.e. 0 for false and anything else for true)
• Gives a way to encode “this AND that” or “this OR that”
• Consider the following:

1 a || b // 1 when EITHER a OR b is true, 0 otherwise
2 a && b // 1 when BOTH a AND b are true, 0 otherwise
3 !a // 1 when a is false, 0 otherwise

• We can string multiple logical expressions together to create compound logical expressions:

1 ((a && b) || (c > d))

If-Else Statements

• Executes a block of code if particular conditions have beenmet
• Basic syntax:

1 if (/* condition goes here */) {
2 /* if the condition is non-zero (true), this code will execute */
3 } else {
4 /* if the condition is 0 (false), this code will execute */
5 }

• The first block executes if the condition is true, otherwise the second block executes
• The else is completely optional
• An if can directly follow an else, creating a chain of conditions to check:

7

1 if (a > b) {
2 c = a;
3 } else if (b > a) {
4 c = b;
5 } else {
6 c = 0;
7 }

• This code sets the variable c equal to the greater of the two variables a or b, or 0 if a and b are
equal.

• What’s the point of the elsewhen you can just do this:

1 if (a > b) {
2 c = a;
3 }
4
5 if (a < b) {
6 c = b;
7 }
8
9 if (a == b) {
10 c = 0;
11 }

1. Multiple if’s could be true, there is no guaranteedmutual exclusion
2. Evaluating if statements takes time (since the condition must be checked).

• If you only have single statement to statement to execute in your if or else, you do not need to
put a block.
– But you should.
– Consider the following

1 if(5 < 10)
2 printf("I am inside the if\n");
3 else
4 printf("I am inside the else\n");
5 printf("5 is not less than 10\n");

• Only the single statement following the if or else is associated with the conditional. . .so when
will 5 is not less than 10 be printed?
– Every time
– Indentation cannot be trusted!

8

– Here’s a version with indentation reflecting the semantics of the program:

1 if(5 < 10)
2 printf("I am inside the if\n");
3 else
4 printf("I am inside the else\n");
5 printf("5 is not less than 10\n");

• How do you fix this?
– Always use block statements!

1 if(5 < 10) {
2 printf("I am inside the if\n");
3 } else {
4 printf("I am inside the else\n");
5 printf("5 is not less than 10\n");
6 }

Nesting

If statements can be nested, meaning you have if statements inside of if statements

nesting.c

1 /*
2 Let's try writing some nested conditional statements...
3 -/
4 #include <stdio.h>
5
6 int main() {
7 int temperature;
8 /*
9 Prompt for values
10 -/
11 printf("\t\tNested Logic Program\n\n");
12 printf("Please enter today's temperature: ");
13 scanf("%d", &temperature);
14
15 if (temperature < 50) {
16 printf("Gosh, it feels cold...\n");
17 if (temperature < 32) {

9

18 printf("And it looks like it's freezing...\n");
19 }
20 else if (temperature < 40) {
21 printf("And it's nearly freezing...\n");
22 }
23 else {
24 printf("But atleast it's not freezing cold!\n");
25 }
26 }
27 else if (temperature > 90) {
28 printf("Gosh, it's hot...\n");
29 if (temperature > 110) {
30 printf("And it's just boiling... head for air conditioning

...\n");
31 }
32 else if (temperature > 100) {
33 printf("Atleast it's not boiling...\n");
34 }
35 else {
36 printf("What a heat wave!!\n");
37 }
38 }
39 else {
40 printf("Doesn't California have a nice climate!\n");
41 }
42 return(0);
43 }

• The conditional expression is an if statement that can be assigned to a variable. It is commonly
called the ternary operator
– The syntax is the following:

1 (/* logical expression goes here */) ? (/* if non-zero (true) */) : (/*
if 0 (false) */)

• If the logical expression is true, the overall condition evaluates to the expression between the ?
and the :.

• If the logical expression is false, the overall condition evaluates to the expression a�er the :
• For example, if we want to set c to be the larger value of two variables a and b, we could write
the following:

1 c = (a > b) ? a : b;

10

Switch-Case Statement

• It’s generally bad practice to string together more than two or three if..else statements to-
gether. The switch...case statement enables us to write many “cases” that could be handled
by if...else in a cleaner manner

• Basic syntax:

1 switch (/* integer or enum goes here */) {
2 case /* potential value of the aforementioned int or enum */:
3 /* code */
4 case /* a different potential value */:
5 /* different code */
6 /* insert additional cases as needed */
7 default:
8 /* more code */
9 }

• The switch uses a variable, and integer or enum, to control which case to evaluate. This is a
limiation; if you must compare more complicated data, you cannot use a switch...case

• This variable is compared against each case, one the comparison is true, that particular case
will activate (execute)
– Once a case has been activated, no other cases will be evaluated

• Typically, the last statement for each case is a break statement. The causes the program to jump
to the statement following the closing } of the switch statement.
– This basically ends the switch statement (and this behavior is probably your intuitionbehind
each case

– However, if you omit the break, the cases “fall throw” until the end of the switch or until a
break is reached

• If no cases are matched and a default case is specified, the default case will execute.
– Use of default is optional.

multiselect.c

1 /*
2 Let's try writing a switch statement...
3 */
4 #include <stdio.h>
5
6 int main() {
7 char letter;
8 /*

11

9 Prompt for values
10 */
11 printf("\t\tCase Statement Program\n\n");
12 printf("Please enter a letter to inspect: ");
13 scanf("%c", &letter);
14
15 /*
16 Just for the record, you can only switch on a
17 integral value. The char datatype is just another
18 name for the set of ints between 0 and 255, so you
19 can switch on chars or ints
20 */
21 switch(letter) {
22 /*
23 Individual letters must be single-quoted.
24 Individual letters map directly to constant
25 integer values based on the ASCII table which
26 we will learn about in upcoming units. The
27 value of each case must be a constant value,
28 not an expression or variable. This often
29 makes switch statements not applicable to your
30 situation.
31 */
32 case 'a':
33 case 'e':
34 case 'i':
35 case 'o':
36 case 'u':
37 case 'y':
38 /*
39 Lacking break statements in the upper
40 listed cases, they will all "fall thru"
41 to the set of statements shown here.
42 While at first this may seem very convenient,
43 this is actually the number one programming
44 bug worldwide. Namely, that folks forget that
45 all the above cases are collapsing down to
46 the code shown below. So use this form
47 with great caution, as it often leads to
48 bugs...
49 */
50 printf("a nice lowercase vowel!\n");
51 break;

12

52 case 'A':
53 case 'E':
54 case 'I':
55 case 'O':
56 case 'U':
57 case 'Y':
58 printf("a nice UPPERCASE vowel!\n");
59 break;
60 case '0':
61 case '1':
62 case '2':
63 case '3':
64 case '4':
65 case '5':
66 case '6':
67 case '7':
68 case '8':
69 case '9':
70 printf("a nice number!\n");
71 break;
72 default:
73 /*
74 The default case is the one selected when
75 no other cases actually match the switched
76 data
77 */
78 printf("this is not something I recognize...\n");
79 break;
80 }
81 return(0);
82 }

Exercises

Write a C program to check whether a given number is even or odd

1 #include <stdio.h>
2 void main()
3 {
4 int num1, rem1;
5
6 printf("Input an integer : ");

13

7 scanf("%d", &num1);
8 rem1 = num1 % 2;
9 if (rem1 == 0)
10 printf("%d is an even integer\n", num1);
11 else
12 printf("%d is an odd integer\n", num1);
13 }

Write a C program to find whether a given year is a leap year or not.

1 #include <stdio.h>
2 void main()
3 {
4 int chk_year;
5
6 printf("Input a year :");
7 scanf("%d", &chk_year);
8 if ((chk_year % 400) == 0)
9 printf("%d is a leap year.\n", chk_year);
10 else if ((chk_year % 100) == 0)
11 printf("%d is a not leap year.\n", chk_year);
12 else if ((chk_year % 4) == 0)
13 printf("%d is a leap year.\n", chk_year);
14 else
15 printf("%d is not a leap year \n", chk_year);
16 }

Write a C program to read any day (7 days of the week) in integer form (as a number) and display day
name using the corresponding word 1 - Monday 2 - Tuesday 3 - Wednesday . . . 6 - Saturday 7 - Sunday

1 #include <stdio.h>
2 void main()
3 {
4 int dayno;
5 printf("Input Day No : ");
6 scanf("%d",&dayno);
7 switch(dayno)
8 {
9 case 1:
10 printf("Monday \n");
11 break;
12 case 2:
13 printf("Tuesday \n");

14

14 break;
15 case 3:
16 printf("Wednesday \n");
17 break;
18 case 4:
19 printf("Thursday \n");
20 break;
21 case 5:
22 printf("Friday \n");
23 break;
24 case 6:
25 printf("Saturday \n");
26 break;
27 case 7:
28 printf("Sunday \n");
29 break;
30 default:
31 printf("Invalid day number. \nPlease try again\n");
32 break;
33 }
34 }

15

	Expressions & Conditionals
	Operators
	Increment and decrement
	Relational and Equality Operators
	Unary Operators
	Logical Operators
	Precedence

	calculations.c
	Conditionals
	selection.c
	Relational Expressions
	Logical Expressions

	If-Else Statements
	Nesting
	nesting.c

	Switch-Case Statement
	multiselect.c

	Exercises

