
Variables & Data Types

Variables

• Variables are names used to refer to some location in memory - a location that holds a value.
– Think of variables as boxes to store data in

• Declaring a variable brings the variable into existence
– This amounts to creating the box to store the value in
– But how does the computer knowwhat size the box should be?

* Not all data has the same size
* The compiler uses the type of the data to determine howmuchmemory is needed to
store the variable

• All variables in C are typed
• Initializing a variable means you assign the variable a value when you declare it
• Some examples:

1 int a; // declars a as an integer
2
3 int anumber, anothernumber, athirdnumber; // declares three variables,

all of which are integers
4
5 int b = 5; // declares b as an int an initializes its value to 5
6
7 b = 10; // assigns b to have the value of 10
8
9 anumber = b; // assigns anumber to have the value of b, which is 10
10
11 anumber = anothernumber = athirdnumber = b; // assigns anumber,

anothernumber, and athirdnumber to have the value of b, which is 10

Naming variables

• Variable names are made up of letters (upper and lower case), digits, and the underscore charac-
ter "_".

• Names cannot begin with a digit
• Some valid variable names:

1 foo
2 Bar
3 BAZ
4 foo_bar

1

5 _foo42
6 _
7 QuUx

• Some invalid variable names:

1 2foo // must not begin with a digit
2 my foo // spaces not allowed in names
3 $foo // $ not allowed -- only letters, and _
4 while // language keywords cannot be used as names

• Youmay only use the same variable oncewithin the same variable scope

Literals

• A value, literally
• 5 is a literal. 32.3 is a literal
• These are invariant values. They can never be changed. They can never store data.
• They are literally some value.

Basic Data Types

• Four basic types:
1. int
2. char
3. float
4. double

int

• Stores an integer value.
• Typically stored in 32 bits (the computer uses 32 bits to represent the number)

– If you have a set of integers centered around 0, what’s the maximum andminimum integer
you can represent with 32-bits?
* 32 bits leads to 4294967296 which is 232 (binary is base 2, and we have 32 bits)
* Maximum value: +2147483647
* Minimum value: -2147483648

• Example usage:

1 int a = 5;

2

char

• Capable of holding any member of the character set.
• Stored in 1 byte (8 bits).
• The underlying structure has the same type of data as an int (with a smaller range of data)

– However, we the way we should use chars is not through integer references
– This is all because internally a character is literally an integer to the computer

• Examples of characters:

1 'a'
2 'b'
3 '3'
4 '\0' // null character
5 '\n' // newline character
6 '\t' // tab character

• A string literal is a collection of characters in a single string
– "Hello, world!" is an example of a string literal
– String literals are denoted by " instead of ’ for their wrapping quotations

float

• Holds a floating point number, such as 32.2
• All representations of floating point numbers are inexact.
• Adding f to the end of a number indicates it is to be interpreted as a float
• Examples of floats:

1 32.3
2 3223.64563f
3 4.0f
4 6.022e+23f

double

• Exact same as a float, but uses double the precision (i.e. double the computer memory) to
store the data

3

sizeof

• If you need to know the exact size of a variable, you can use sizeof (a unary operator) to find
out:

1 sizeof(type)
2 sizeof obj

• This returns the size of the underlying type specified
• The type of sizeof returns is size_t, which represents a size (unsigned value)

1 size_t size;
2 int i;
3 size = sizeof(i);

• In this case, we should get size assigned to 4, since an integer is typically 4 bytes (32 bits).

Type Modifiers

• Wemay want to modify the amount of storage used by a type.
• This enables data to use more or less memory depending upon the use case.
• Adding a modifier of longwill make the type use more memory
• Adding a modifier of shortwill make the type use less memory
• Adding a modifier of unsignedwill make the type non-negative in all cases (changes the range
of possible values

• If you use short or long by itself, the int type is implied

1 unsigned short int usi; /* fully qualified -- unsigned short int */
2 short si; /* short int */
3 unsigned long uli; /* unsigned long int */

• The constmakes a particular variable constant, or unmodifiable.
– Youmust initialize the value when you declare it.
– What’s the advantage?

* You gain additional protections against a programmermaking amistake andmodifying
a value they shouldn’t

* Also protects against magic numbers - don’t put the same literal all over your program.
Use a constant to define the value once and use the constant everywhere you need
that value

4

Simple IO

Output

• Input is the process of getting information from the user of your program
• Output is the process of presenting/saving information from the results of your program
• For now, all IO we deal with will come from the stdio.h Standard Library file.
• Recall our first program

1 #include <stdio.h>
2
3 int main(void)
4 {
5 printf("Hello, World!");
6 return 0;
7 }

• This will print the following on your screen:

1 Hello, world!

• This is a form of output to the user using the printf() function.
• The printf function takes an argument, namely the string you want to print

– This can be a string literal or a C-style string (we’ll cover these later)

Placeholders

• This is great, but what if we want to output the results of some computation?
• We can’t type the result into the program directly (that would miss the whole point of having the
computer compute something!).

• Instead, we can insert a placeholder to indicate we will place the value of a variable in the string
• Example:

1 #include <stdio.h>
2
3 int main(void)
4 {
5 printf("19+31 is %d", 19+31);
6 return 0;
7 }

• The %d here indicates we want to print an integer

5

• These placeholders are called format specifiers.
• Here is a list of important format specifiers:

1 %d // int (same as %i)
2 %ld // long int (same as %li)
3 %f // float
4 %lf // double
5 %c // char
6 %s // string
7 %x // hexadecimal

• You can find a complete list of format specifiers here.

Tabs and Newlines

• We need to tell printfwhen we want to actually print whitespace
• For instance, suppose we wanted the following output:

1 1905
2 312 +
3 -----

• We can insert a newline escape character with \n.
• All escaper characters begin with a \
• To get the output above, we would use the following printf statement

1 printf(" 1905\n312 +\n-----\n");

• We can also (more typically) split this over multiple lines

1 #include <stdio.h>
2
3 int main(void)
4 {
5 printf(" 1905\n");
6 printf("312 +\n");
7 printf("-----\n");
8 printf("%d", 1905+312);
9 return 0;
10 }

6

https://en.wikipedia.org/wiki/printf_format_string

Input

• Similar to printf, we use a function called scanf() to get basic input from the user.
– Note: Visual Studio users will need to use scanf_s() because scanf() is technically
insecure due a longstanding bug. You can use scanf_s() the same way you would use
scanf()

• Placeholders are mostly similar to those of printf
• However, because we are getting a value from the user, we need a place to store that value

– Where should we store this value? A variable
• Instead of directly giving scanf our variable, instead we’ll give it a address to the variable

– We’ll talk more about addresses later (when we learn about pointers), but for now, think of
a pointer as the memory location of a variable

• We’ll get the address of the variable with the address of operator (&)
• Here’s an example of getting an integer from the user:

1 #include <stdio.h>
2
3 int main(void)
4 {
5 int a;
6
7 printf("Please input an integer value: ");
8 scanf("%d", &a);
9 printf("You entered: %d\n", a);
10
11 return 0;
12 }

Basic Operators

• C supports basic arithmetic operators to help you domath.
• Basic operators include:

– + addition
– - subtraction
– *multiplication
– / division (floating point and integer division depending upon type)
– %modulo (remainder division)

7

Modulo (remainder division)

• Remember integer division from elementary school?
• e.g. 7/5was 1r2 (1 with a remainder of 2) because 5 goes into 7 one time with a remainder of 2.
• When you divide two ints, you only get the quotient (number of times the denominator goes into
the numerator).

• Modulo % gives us a way to get the remainder from the quotient division.
• Modulo is extremely useful.

– It lets you add a bound to possible values.
– For instance, suppose you want to pick a random number between 0 and 9.
– Let’s say you have a rand() function that returns a randomnumber between 0 and a really,
really big number (say 10000000000).

– You can do rand()% 10 and you are guaranteed to get a number between 0 and 9.
– It doesn’t matter how big the number is, the remaindermust be between 0 and 9.
– Otherwise, the quotient increments!

Exercises (for practice only)

1. Write a C program to print your name, date of birth. andmobile number.

1 #include <stdio.h>
2 int main()
3 {
4 printf("Name : Alexandra Abramov\n");
5 printf("DOB : July 14, 1975\n");
6 printf("Mobile : 99-9999999999\n");
7 return 0;
8 }

2. Write a C program to compute the perimeter and area of a rectangle with a height of 7 inches.
and width of 5 inches.

1 #include <stdio.h>
2
3 int main() {
4 int width;
5 int height;
6
7 int area;
8 int perimeter;
9

8

10 height = 7;
11 width = 5;
12
13 perimeter = 2*(height + width);
14 printf("Perimeter of the rectangle = %d inches\n", perimeter);
15
16 area = height * width;
17 printf("Area of the rectangle = %d square inches\n", area);
18
19 return 0;
20 }

3. Write a C program that accepts two integers from the user and calculate the product of the two
integers.

1 #include <stdio.h>
2 int main()
3 {
4 int x, y, result;
5 printf("\nInput the first integer: ");
6 scanf("%d", &x);
7 printf("\nInput the second integer: ");
8 scanf("%d", &y);
9 result = x * y;
10 printf("Product of the above two integers = %d\n", result);
11 }

4. Write a C program to convert specified days into years, weeks and days.

1 #include <stdio.h>
2 int main()
3 {
4 int days, years, weeks;
5
6 days = 1329;
7
8 // Converts days to years, weeks and days
9 years = days/365;
10 weeks = (days % 365)/7;
11 days = days - ((years*365) + (weeks*7));
12
13 printf("Years: %d\n", years);
14 printf("Weeks: %d\n", weeks);

9

15 printf("Days: %d \n", days);
16
17 return 0;
18 }

10

	Variables & Data Types
	Variables
	Naming variables

	Literals
	Basic Data Types
	int
	char
	float
	double

	sizeof
	Type Modifiers
	Simple IO
	Output
	Placeholders
	Tabs and Newlines
	Input

	Basic Operators
	Modulo (remainder division)

	Exercises (for practice only)

