
Variables & Data Types

Variables

• Variables are names used to refer to some location in memory - a location that holds a value.
– Think of variables as boxes to store data in

• Declaring a variable brings the variable into existence
– This amounts to creating the box to store the value in
– But how does the computer knowwhat size the box should be?

* Not all data has the same size
* The compiler uses the type of the data to determine howmuchmemory is needed to
store the variable

• All variables in C are typed
• Initializing a variable means you assign the variable a value when you declare it
• Some examples:

1 int a; // declars a as an integer
2
3 int anumber, anothernumber, athirdnumber; // declares three variables,

all of which are integers
4
5 int b = 5; // declares b as an int an initializes its value to 5
6
7 b = 10; // assigns b to have the value of 10
8
9 anumber = b; // assigns anumber to have the value of b, which is 10
10
11 anumber = anothernumber = athirdnumber = b; // assigns anumber,

anothernumber, and athirdnumber to have the value of b, which is 10

Naming variables

• Variable names are made up of letters (upper and lower case), digits, and the underscore charac-
ter "_".

• Names cannot begin with a digit
• Some valid variable names:

1 foo
2 Bar
3 BAZ
4 foo_bar
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5 _foo42
6 _
7 QuUx

• Some invalid variable names:

1 2foo // must not begin with a digit
2 my foo // spaces not allowed in names
3 $foo // $ not allowed -- only letters, and _
4 while // language keywords cannot be used as names

• Youmay only use the same variable oncewithin the same variable scope

Literals

• A value, literally
• 5 is a literal. 32.3 is a literal
• These are invariant values. They can never be changed. They can never store data.
• They are literally some value.

Basic Data Types

• Four basic types:
1. int
2. char
3. float
4. double

int

• Stores an integer value.
• Typically stored in 32 bits (the computer uses 32 bits to represent the number)

– If you have a set of integers centered around 0, what’s the maximum andminimum integer
you can represent with 32-bits?
* 32 bits leads to 4294967296 which is 232 (binary is base 2, and we have 32 bits)
* Maximum value: +2147483647
* Minimum value: -2147483648

• Example usage:

1 int a = 5;
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char

• Capable of holding any member of the character set.
• Stored in 1 byte (8 bits).
• The underlying structure has the same type of data as an int (with a smaller range of data)

– However, we the way we should use chars is not through integer references
– This is all because internally a character is literally an integer to the computer

• Examples of characters:

1 'a'
2 'b'
3 '3'
4 '\0' // null character
5 '\n' // newline character
6 '\t' // tab character

• A string literal is a collection of characters in a single string
– "Hello, world!" is an example of a string literal
– String literals are denoted by " instead of ’ for their wrapping quotations

float

• Holds a floating point number, such as 32.2
• All representations of floating point numbers are inexact.
• Adding f to the end of a number indicates it is to be interpreted as a float
• Examples of floats:

1 32.3
2 3223.64563f
3 4.0f
4 6.022e+23f

double

• Exact same as a float, but uses double the precision (i.e. double the computer memory) to
store the data
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sizeof

• If you need to know the exact size of a variable, you can use sizeof (a unary operator) to find
out:

1 sizeof(type)
2 sizeof obj

• This returns the size of the underlying type specified
• The type of sizeof returns is size_t, which represents a size (unsigned value)

1 size_t size;
2 int i;
3 size = sizeof(i);

• In this case, we should get size assigned to 4, since an integer is typically 4 bytes (32 bits).

Type Modifiers

• Wemay want to modify the amount of storage used by a type.
• This enables data to use more or less memory depending upon the use case.
• Adding a modifier of longwill make the type use more memory
• Adding a modifier of shortwill make the type use less memory
• Adding a modifier of unsignedwill make the type non-negative in all cases (changes the range
of possible values

• If you use short or long by itself, the int type is implied

1 unsigned short int usi; /* fully qualified -- unsigned short int */
2 short si; /* short int */
3 unsigned long uli; /* unsigned long int */

• The constmakes a particular variable constant, or unmodifiable.
– Youmust initialize the value when you declare it.
– What’s the advantage?

* You gain additional protections against a programmermaking amistake andmodifying
a value they shouldn’t

* Also protects against magic numbers - don’t put the same literal all over your program.
Use a constant to define the value once and use the constant everywhere you need
that value
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Simple IO

Output

• Input is the process of getting information from the user of your program
• Output is the process of presenting/saving information from the results of your program
• For now, all IO we deal with will come from the stdio.h Standard Library file.
• Recall our first program

1 #include <stdio.h>
2
3 int main(void)
4 {
5 printf("Hello, World!");
6 return 0;
7 }

• This will print the following on your screen:

1 Hello, world!

• This is a form of output to the user using the printf() function.
• The printf function takes an argument, namely the string you want to print

– This can be a string literal or a C-style string (we’ll cover these later)

Placeholders

• This is great, but what if we want to output the results of some computation?
• We can’t type the result into the program directly (that would miss the whole point of having the
computer compute something!).

• Instead, we can insert a placeholder to indicate we will place the value of a variable in the string
• Example:

1 #include <stdio.h>
2
3 int main(void)
4 {
5 printf("19+31 is %d", 19+31);
6 return 0;
7 }

• The %d here indicates we want to print an integer
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• These placeholders are called format specifiers.
• Here is a list of important format specifiers:

1 %d // int (same as %i)
2 %ld // long int (same as %li)
3 %f // float
4 %lf // double
5 %c // char
6 %s // string
7 %x // hexadecimal

• You can find a complete list of format specifiers here.

Tabs and Newlines

• We need to tell printfwhen we want to actually print whitespace
• For instance, suppose we wanted the following output:

1 1905
2 312 +
3 -----

• We can insert a newline escape character with \n.
• All escaper characters begin with a \
• To get the output above, we would use the following printf statement

1 printf(" 1905\n312 +\n-----\n");

• We can also (more typically) split this over multiple lines

1 #include <stdio.h>
2
3 int main(void)
4 {
5 printf(" 1905\n");
6 printf("312 +\n");
7 printf("-----\n");
8 printf("%d", 1905+312);
9 return 0;
10 }
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Input

• Similar to printf, we use a function called scanf() to get basic input from the user.
– Note: Visual Studio users will need to use scanf_s() because scanf() is technically
insecure due a longstanding bug. You can use scanf_s() the same way you would use
scanf()

• Placeholders are mostly similar to those of printf
• However, because we are getting a value from the user, we need a place to store that value

– Where should we store this value? A variable
• Instead of directly giving scanf our variable, instead we’ll give it a address to the variable

– We’ll talk more about addresses later (when we learn about pointers), but for now, think of
a pointer as the memory location of a variable

• We’ll get the address of the variable with the address of operator (&)
• Here’s an example of getting an integer from the user:

1 #include <stdio.h>
2
3 int main(void)
4 {
5 int a;
6
7 printf("Please input an integer value: ");
8 scanf("%d", &a);
9 printf("You entered: %d\n", a);
10
11 return 0;
12 }

Basic Operators

• C supports basic arithmetic operators to help you domath.
• Basic operators include:

– + addition
– - subtraction
– *multiplication
– / division (floating point and integer division depending upon type)
– %modulo (remainder division)
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Modulo (remainder division)

• Remember integer division from elementary school?
• e.g. 7/5was 1r2 (1 with a remainder of 2) because 5 goes into 7 one time with a remainder of 2.
• When you divide two ints, you only get the quotient (number of times the denominator goes into
the numerator).

• Modulo % gives us a way to get the remainder from the quotient division.
• Modulo is extremely useful.

– It lets you add a bound to possible values.
– For instance, suppose you want to pick a random number between 0 and 9.
– Let’s say you have a rand() function that returns a randomnumber between 0 and a really,
really big number (say 10000000000).

– You can do rand()% 10 and you are guaranteed to get a number between 0 and 9.
– It doesn’t matter how big the number is, the remaindermust be between 0 and 9.
– Otherwise, the quotient increments!

Exercises (for practice only)

1. Write a C program to print your name, date of birth. andmobile number.

1 #include <stdio.h>
2 int main()
3 {
4 printf("Name : Alexandra Abramov\n");
5 printf("DOB : July 14, 1975\n");
6 printf("Mobile : 99-9999999999\n");
7 return 0;
8 }

2. Write a C program to compute the perimeter and area of a rectangle with a height of 7 inches.
and width of 5 inches.

1 #include <stdio.h>
2
3 int main() {
4 int width;
5 int height;
6
7 int area;
8 int perimeter;
9
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10 height = 7;
11 width = 5;
12
13 perimeter = 2*(height + width);
14 printf("Perimeter of the rectangle = %d inches\n", perimeter);
15
16 area = height * width;
17 printf("Area of the rectangle = %d square inches\n", area);
18
19 return 0;
20 }

3. Write a C program that accepts two integers from the user and calculate the product of the two
integers.

1 #include <stdio.h>
2 int main()
3 {
4 int x, y, result;
5 printf("\nInput the first integer: ");
6 scanf("%d", &x);
7 printf("\nInput the second integer: ");
8 scanf("%d", &y);
9 result = x * y;
10 printf("Product of the above two integers = %d\n", result);
11 }

4. Write a C program to convert specified days into years, weeks and days.

1 #include <stdio.h>
2 int main()
3 {
4 int days, years, weeks;
5
6 days = 1329;
7
8 // Converts days to years, weeks and days
9 years = days/365;
10 weeks = (days % 365)/7;
11 days = days - ((years*365) + (weeks*7));
12
13 printf("Years: %d\n", years);
14 printf("Weeks: %d\n", weeks);
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15 printf("Days: %d \n", days);
16
17 return 0;
18 }
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