
Introduction to C & IDEs

• See online notes on Visual Studio and Xcode

Hello, World!

• First intro program.
• The programwill print the text “Hello, World!” onto the screen.
• That’s it.

hello_world.c

1 #include <stdio.h>
2
3 int main(void)
4 {
5 printf("Hello, World!\n");
6 return 0;
7 }

• Let’s break this down:

1 #include <stdio.h>

• This is a preprocessor directive. We’ll talk more about the preprocessor later.
• For now, think of this as a step that happens before compilation

– Compilation is the process of converting your C program into machine code)
• Here, we are using the #include directive to tell the preprocessor to get the stdio.h file and
include in our program
– “Include” in this sense means bring the source code of stdio.h into this project
– This prevents us from having to re-invent the wheel - we can easily bring in existing code
into our projects and use it.

– For this example, we only need to printf function from stdio.h
– Files that end in .h are called header files. We’ll talk more about headers later.

• The main function is the entry point of all C programs. The computer needs to knowwhere to
start your program. main is the starting point.

• printf("Hello, World!"); prints the string “Hello, World!” to the console
• return 0; terminates the program to let the operating system whether or not the program
terminated successfully.
– 0 indicates success in this case

1



Preliminaries

Comments

1. Single-line comments start with //
• Example:

1 // this is a single-line comment

2. Variable-line comments start with /* and end with */
• If you have a multi-line comment, each line beings with * a�er starting the comment

1 /*
2 * This is a multi-line comment
3 */

Block Structure, Statements, Whitespace, Scope

Statement

• A statement is a command given to the computer that instructs the computer to take a specific
action
– Think of statements as the most atomic unit of our programs.
– A program is made up of some sequence of statements
– Statements terminate with the the semicolon ; character

• An example statement: int x = 1;
– This statement delcares a variable named x and initializes x to have the value 1.
– This value of 1 can be accessed ormodifiedwith the identifier x

• Understanding check:
– What does it mean to declare a variable?
– What does a variable store?
– How can we access the value of a particular variable?

Blocks

• Blocks consists of a group of executable statements
• Blocks begin with { and end with }
• Example:

1 int main(void)
2 {

2



3 /* this is a 'block' */
4 int i = 5;
5 {
6 /* this is also a 'block', nested inside the outer block */
7 int i = 6;
8 }
9 return 0;
10 }

Whitespace

• Whitespace in a C program refers to tabs, spaces, and newline characters that separate text in
the source code.

• Whitespace is ignored in many instances in C programs.
• The following are equivalent to a C compiler

1 printf("Hello world"); return 0;

1 printf("Hello world");
2 return 0;

1 printf(
2 "Hello world");
3
4
5 return 0;

• When does the compiler not ignore whitespace?
– Whitespace is important when using any keyword in C, such as return, int and others.

Scope

• Two types of scope: global and local
• Global indicates something can be seen or manipulated from anywhere in the program
• Local indicates something can be seen or manipulated from anywhere in the program
• Example:

1 int i = 5; /* this is a 'global' variable, it can be accessed from
anywhere in the program */

2

3



3 /* this is a function, all variables inside of it are "local" to the
function. */

4 int main(void)
5 {
6 int i = 6; /* 'i' now equals 6 */
7 printf("%d\n", i); /* prints a '6' to the screen, instead of the

global variable of 'i', which is 5 */
8
9 return 0;
10 }

• What do we see from this example?
– Local scope supersedes global

• A more complicated example:

1 /* the main function */
2 int main(void)
3 {
4 /* this is the beginning of a 'block', you read about those above

*/
5
6 int i = 6; /* this is the first variable of this 'block', 'i' */
7
8 {
9 /* this is a new 'block', and because it's a different block,

it has its own scope */
10
11 /* this is also a variable called 'i', but in a different '

block',
12 because it's in a different 'block' than the old 'i', it

doesn't affect the old one! */
13 int i = 5;
14 printf("%d\n", i); /* prints a '5' onto the screen */
15 }
16 /* now we're back into the old block */
17
18 printf("%d\n", i); /* prints a '6' onto the screen */
19
20 return 0;
21 }

4



Basic Function Use

• We will take extensively about functions later in the course, but we need to have a basic intro-
duction now - we need to know the basics to succeed in this course

• A function is a special kind of block that performs a well-defined task
• It enables programmers to perform a task without knowing how the function works

– A form of information hiding
• When you call a function, you are telling the computer to execute the entire function code block
in a single statement
– The function invoking the function is called the caller
– The function being called is called the callee

• Many functions require data as input
– This data is passed to the function as arguments

• Many functions return a value to the caller
– This is called a return value

• What you should know before calling a function:
– What the function does
– The data type of the arguments are and what they mean
– The data type of the return value and what it means

The Standard Library

• A collection of standard functions provided to you as the programmer to make programming
easier, more secure, more robust, andmore standardized

• #include <stdio.h> includes the standard library file stdio.hwhich stands for standard IO
– We used this header to bring in the printf function, which is a part of IO

5


	Introduction to C & IDEs
	Hello, World!
	hello_world.c

	Preliminaries
	Comments
	Block Structure, Statements, Whitespace, Scope

	Basic Function Use
	The Standard Library


