
CStrings

• So far, we’ve dealt only with string literals such as “Hello, World!”, but what if we want to store
strings as variables?

• We’ll use what’s called a C-style string to do this

CStrings are arrays

• Just any array!
• We can write an array of characters to form a string:

1 char arr[] = {'H', 'e', 'l', 'l', 'o', ' ', 'W', 'o', 'r', 'l', 'd', '!
'};

• But this is is not a C-string
– This is an array of characters, but not a C-style string.

• Well what is a C-string?
– A character array whose final character is the null character \0:

• To write “Hello World!” as a C-string:

1 char arr[] = {'H', 'e', 'l', 'l', 'o', ' ', 'W', 'o', 'r', 'l', 'd', '!
', '\0'};

• But this is incredibly tedious to define strings this way
• Fortunately, we can assign a character array to string literal to create a C-string

1 char arr[] = "Hello, World!"; // arr will terminate with a null
character.

2 // Null character is automatically added
by the compiler

• Another example:

1 char t[5] = "HI";

1

Figure 1: IMAGE

• When we initalize a character using a string literal, the null character is automatically added
– This means the character array must have enough space for every character of the string
plus an additional element for the null character.
* For instance, if we do the following, we don’t end up with a C-string (there’s no room
for the entire string (and therefore there isn’t room for the null character either)

1 char arr[5] = "Hello, World!"; // arr only stores the first 5 chracters
2 // arr has the values [H', 'e', 'l', 'l

', 'o']

• But we also don’t have to fill up the entire array either, the null-character indicates the end of
the string.

• Bottom line: a character array is only a character array if it is null-terminated, meaning the final
character is the null-character

• Why does any of this matter?
– Strings are an incredibly common data type in real-world data.
– Storing names, addresses, email addresses, etc all required strings.
– There is a very large standard library header, called string.h, that provides a wide range
of functionality.
* All of this functionality relies on using C-strings, not character arrays.

• Another important note: Strings are NOT assignable. We can’t do the following

1 char b[50];
2 b = "Hello, World!"; // this will error, not assignable

• Why not?
– b is basically just a pointer! (Arrays are basically constant pointers)
– Does it make sense to assign a pointer to a literal? No.

2

• But we need a way to assign strings.
– strcpy function will help. . .keep reading.

String Library

• Large library available for us to use to copy, compare, andmanipulate strings.
• This is intended to help you, so you should view this as free functionality (as long as you are
willing to read a tiny bit to figure out what the library functions do)

• Include the library with:

1 #include <string.h>

Important functions

strcat

• Concatenates two strings.
• For instance, “Hello,” concatenated with " World!" yields “Hello, World!”

1 char *strcat(char *dest, const char *src);

• Parameters:
– dest: destination array. Current value will be the “start” of the concatenated string.Must
be large enought to contain the concatenated string

– src: string to be appended to dest
• Return value:

– Returns a point to dest (similar to our insert_into_array, it’s common for functions
to return a pointer to a parameter

• Uses:
– Allows you to aggregate data into a single variable

• Example:

1 #include <stdio.h>
2 #include <string.h>
3
4 int main () {
5 // want to produce "Hello, World!", so we want to do "Hello,"

concatenated with " World!"
6 char dest[50] = "Hello,";
7 char src[50] = " World!";

3

8
9 // could also assign dest as return value
10 strcat(dest, src);
11
12 printf("Final destination string : |%s|\n", dest);
13
14 // What happens if we do this multiple times?
15 // this time, we'll assign return value to dest
16 char *b = strcat(dest, src);
17
18 printf("Final destination string : |%s|\n", b);
19
20 return 0;
21 }

• But be careful! Must make sure dest has enough room for src in memory (i.e. the char array
must be large enough to hold both strings, plus a null-character)

strcmp

• Performs string comparison
• Similar to an equality operator, such as >, <, etc, but for strings.
• Useful primarily for determining if two strings are equal

1 int strcmp(const char *s1, const char *s2);

• Parameters:
– s1: first string for comparison
– s2: second string for comparison

• Return value:
– An integer indicating the relationship between the two strings:

* 0 indicates the two strings are equal, character by character
* Negative value indicates the strings do not match. The first character that doesn’t
match in the strings has a lower lexicographical value in s1 than s2

* Positive value indicates the strings do notmatch. The first character that doesn’tmatch
in the strings has a greater lexicographical value in s1 than s2

– If the return value is not 0, why is it useful to indicate the lexicographical order of the first
character that doesn’t match?
* Sorting!
* We can sort an array of strings (a multi-dimensional array) using this

4

• Uses:
– Checking for string equality
– Sorting

• Example:

1 #include <stdio.h>
2 #include <string.h>
3
4 int main () {
5 // want to produce "Hello, World!", so we want to do "Hello,"

concatenated with " World!"
6 char s1[50] = "testing";
7 char s2[50] = "testing";
8 char s3[50] = "teasing";
9 char s4[50] = "ttesting";
10
11 // comparing s1 and s2
12 if(!strcmp(s1,s2)){
13 printf("s1 and s2 are equal\n");
14 } else {
15 printf("s1 and s2 are somehow not equal...\n");
16 }
17
18 // comparing s1 and s3
19 if(!strcmp(s1,s3)){
20 printf("s1 and s2 are somehow equal...\n");
21 }
22 else if (strcmp(s1,s3) < 0) {
23 printf("s1 has lower value for first character that does not match\

n");
24 }
25 else if (strcmp(s1,s3) > 0) {
26 printf("s3 has lower value for first character that does not match\

n");
27 }
28
29 // comparing s1 and s4
30 if(!strcmp(s1,s4)){
31 printf("s1 and s2 are somehow equal...\n");
32 }
33 else if (strcmp(s1,s4) < 0) {
34 printf("s1 has lower value for first character that does not match\

n");

5

35 }
36 else if (strcmp(s1,s4) > 0) {
37 printf("s4 has lower value for first character that does not match\

n");
38 }
39
40 return 0;
41 }

strcpy

• Copies content into a string
• Used to perform “assignment” through copying

1 char *strcpy(char *dest, const char *src);

• Parameters:
– dest: destination for copying. Must have enough room for src
– src: source for copying. Can be another c-string or a string literal

• Return value:
– dest is returned

• Uses:
– Assigning literals to strings
– Copying strings

• Example:

1 /* strcpy example */
2 #include <stdio.h>
3 #include <string.h>
4
5 int main()
6 {
7 char str1[]="Sample string";
8 char str2[40];
9 char str3[40];
10 strcpy(str2,str1);
11 strcpy(str3,"copy successful");
12 printf("str1: %s\nstr2: %s\nstr3: %s\n", str1, str2, str3);
13 return 0;
14 }

6

strlen

• Returns the length of a string
• Meanswedon’t need topass around the lengthof a c-string,we can compute the lengthwhenever
we need it!

1 size_t strlen(const char *s);

• Parameters:
– s: string to compute the length of

• Return value:
– The length of the C string, excluding the null character

• Uses:
– Determining the length of a string
– Useful when attempting to iterate over every character in a string

• Example:

1 #include <stdio.h>
2 #include <string.h>
3
4 int main ()
5 {
6 char s1[50] = "Hello, World!";
7 char s2[] = "Hello, World!";
8 printf("s1 is %lu characters long\n", strlen(s1));
9 printf("s2 is %lu characters long\n", strlen(s2));
10 return 0;
11 }

strtok

• Tokenizes a string
– This means it breaks up a string based on a set of delimiters

• Will be EXTREMELY useful for your homework assignment

1 char *strtok(char *str, const char *delimiters);

• Parameters:
– str: string to tokenize.

* On the first time you call strtok, provide the string to tokenize. As you processes each
token, pass NULL. See example.

7

– delimiters: set of delimiters to use to break up the string. Every time a character in the
delimiters string is seen, the string is “broken” by inserting a null-character in the delimiters
place

• Return value:
– If a token is found, a pointer to the beginning of the token
– Otherwise, a null pointer. A null pointer will also be returned when strtok hits the end of
the string

• Uses:
– Parsing a string
– Splitting a string based on a character
– Very useful to process data!

• Example:

1 /* strtok example */
2 #include <stdio.h>
3 #include <string.h>
4
5 int main ()
6 {
7 char str[] ="- This, a sample string.";
8 int str_len = strlen(str);
9 char * pch;
10 printf ("Splitting string \"%s\" into tokens:\n",str);
11 // first call to strtok inserts a null character every time a

delimiter is seen
12 pch = strtok (str," ,.-");
13 // pch will be set to null by strtok after processing the last token
14 while (pch != NULL)
15 {
16 printf ("%s\n",pch);
17 // advances the pointer to the next token
18 pch = strtok (NULL, " ,.-");
19 }
20 return 0;
21 }

fgets

• Included in stdio.h
• Reads a line from standard input (stdin) and stores it in a c-string

8

1 char *fgets(char *s, int num, FILE *stream);

• Parameters:
– s: string used to store the values inputted
– num: max number of characters to be copied into str, including the null-character
– stream: stream to copy into (we will use standard input, stdin)

• Return value:
– Returns a pointer to s on success, returns NULL on failure or when the end-of-file occurs

• Uses:
– Getting user input

• Example:

1 #include <stdio.h>
2
3 int main () {
4 char str[50];
5
6 printf("Enter a string : ");
7 fgets(str, 50, stdin);
8
9 printf("You entered: %s", str);
10
11 return(0);
12 }

Converting strings to other data types

• A bunch of functions to do this for you (included in stdlib.h):
– atoi: string to int
– atof: string to float
– atol: string to long
– strtod: string to double
– There are somemore rare conversions provided by stdlib as well

Exercises

1. Write your own implementation of strlen using the following function prototype (note: you are
not allowed to pass in the length of the array, youmust compute the length based on the contents

9

of the string)

1 size_t strlen_in_class(const char *s);

1 #include <stdio.h>
2 #include <string.h>
3
4 size_t strlen_in_class(const char *s);
5
6 int main ()
7 {
8 char s1[50] = "Hello, World!";
9 char s2[] = "Hello, World!";
10 printf("s1 is %lu characters long\n", strlen_in_class(s1));
11 printf("s2 is %lu characters long\n", strlen_in_class(s2));
12 return 0;
13 }
14
15 size_t strlen_in_class(const char *s){
16 size_t len = 0;
17 while(*s != '\0'){
18 s++;
19 len++;
20 }
21 return len;
22 }

2. Write a function to count the number of words in a string. Youmay assume a word is separated
by a space, tab, or new line. Any other character is assumed to be part of a word.

1 #include <stdio.h>
2 #include <string.h>
3 #include <stdlib.h>
4
5 int word_counter(char *str);
6
7 int main()
8 {
9 const int str_size = 100;
10 char str[str_size];
11
12 printf("Input the string : ");
13 fgets(str, str_size, stdin);

10

14 printf("Total number of words in the string is : %d\n", word_counter(
str));

15 return 0;
16 }
17
18 int word_counter(char *str){
19 int count = 0;
20
21 /* loop till end of string */
22 while(*str !='\0')
23 {
24 /* check whether the current character is white space or new line

or tab character*/
25 /* note that this will count consecutive spaces as multiple words!

*/
26 if(*str == ' ' || *str == '\n' || *str == '\t')
27 {
28 count++;
29 }
30 str++;
31 }
32 return count;
33 }

• Solution using strtok

1 #include <stdio.h>
2 #include <string.h>
3 #include <stdlib.h>
4
5 int word_counter(char *str);
6
7 int main()
8 {
9 const int str_size = 100;
10 char str[str_size];
11
12 printf("Input the string : ");
13 fgets(str, str_size, stdin);
14 printf("Total number of words in the string is : %d\n", word_counter(

str));
15 return 0;
16 }

11

17
18 int word_counter(char *str){
19 int count = 0;
20
21 // initialize the tokenizer
22 char *pch = strtok(str, " \t\n");
23 while(pch != NULL){
24 // increment our word count
25 count++;
26 // advance to the next token
27 pch = strtock(NULL, " \t\n");
28 }
29 return count;
30 }

12

	CStrings
	CStrings are arrays

	String Library
	Important functions
	strcat
	strcmp
	strcpy
	strlen
	strtok
	fgets
	Converting strings to other data types

	Exercises

