
Mid-semester Review

Three stages of compilation

1. Preprocessor
• Processes all # directives (includes, etc)

2. Compilation
• Takes .c files and compiles them into object files (.o)

3. Linker
• Takes object files (.o) and links them to produce a final executable

How to read error messages

1. Use of undeclared identifier
• Means you used an identifier (variable name) without declaring it

• For instance, if we use the variable inches_per_foot before declaring it:

1 my_program.c: In function main:
2 my_program.c:30: error: inches_per_foot undeclared (first use in this

function)

• This tells us in my_program.c, inside of the functionmain, on line 30 (indicated by :30), we used
a variable we didn’t declare

2. Use of a unknown/undefined function
• Means we didn’t link to a function we used correctly. This may mean a particular library we
are using may be incorrectly installed, or we didn’t compile all of our code.

• Nomatter the cause, we need to figure outwhy the linker can’t find the function’s compiled
definition

• For instance:

1 Undefined symbols for architecture x86_64:
2 "_sqrt", referenced from:
3 _main in main.o
4 ld: symbol(s) not found for architecture x86_64
5 clang: error: linker command failed with exit code 1 (use -v to see

invocation)

• This means the _sqrt symbol could not be found. What is a symbol? Symbols are a part of
object files.

• Anytime you see ld it means the linker failed.

1

3. Implicit declarations
• Typically means you forgot in include a library
• Also could mean you are using a function before the compiler is aware of the function. I.e.
you forgot to create a function prototype, defined the function a�er main, but used the
function in main (meaning main doesn’t knowwhat function you are talking about)

• For instance:

1 warning: implicit declaration of function 'printf'

• Means we forgot to include stdio.h (#include <stdio.h>)
• Supposewedefine the functionmy_func a�ermain but use it inmainwithout putting aprototype
before main:

1 warning: implicit declaration of function 'my_func'

• Fix this by adding a prototype of the function before main or moving the definition to before
main

5. Missing semicolon
• Means we forgot to put a semicolon to end a statement

1 Expected ';' after expression

• Fix this by adding a semicolon in the correct place

• Any of these error/warningmessagesmay be accompanied with other errors/warnings

Exercises

1. Write a C program to print the contents of an array of C-strings (note this requires printing a
multidimensional array

1 #include <stdio.h>
2 #include <string.h>
3
4 //1. Write a C program to print the contents of an array of C-strings (

note this requires printing a multidimensional array)
5
6 void print_strings(char ** word_arr, size_t n_words){
7 for(int i = 0; i < n_words; i++){
8 printf("%s ", word_arr[i]);
9 }

2

10 printf("\n");
11 }
12
13 int main(){
14 char *a[] = {
15 "cs",
16 "50",
17 "is",
18 "awesome"
19 };
20 print_strings(a, 4);
21 }

2. Write aCprogram to count thenumber of occurrences of a user-specified value in a 2-dimensional
integer array

1 #include <stdio.h>
2 #include <string.h>
3
4 // Write a C program to count the number of occurrences of a user-

specified value in a 2-dimensional integer array
5
6 int count_occurances(int int_arr[][5], size_t num_cols, size_t num_rows

, int target_value){
7 int count = 0;
8
9 // loop over rows
10 for(int i = 0; i < num_rows; i++){
11 // loop over columns
12 for(int j = 0; j < num_cols; j++){
13 // compare value at this position to target value
14 if(target_value == int_arr[i][j]){
15 count++;
16 }
17 }
18 }
19
20 return count;
21 }
22
23 int main(){
24 int a[5][5] = {
25 {1, 2, 3, 4, 5},

3

26 {2, 2, 3, 4, 54},
27 {6, 2, 7, 4, 5},
28 {1, 2, 3, 4, 36},
29 {10, 99, 3, 4, 5},
30 };
31 int count = count_occurances(a, 5, 5, 1);
32 printf("1's count: %d\n", count);
33 count = count_occurances(a, 5, 5, 7);
34 printf("7's count: %d\n", count);
35 }

3. Write a C program to perform binary search. A binary search search algorithm finds the position
of a target value within a sorted array. Here’s the algorithm:

1 Sorted array: L = [1, 3, 4, 6, 8, 9, 11]
2 Target value: X = 4
3 Compare X to 6. X is smaller. Repeat with L = [1, 3, 4].
4 Compare X to 3. X is larger. Repeat with L = [4].
5 Compare X to 4. X equals 4, so the position is returned.

1 #include <stdio.h>
2 #include <string.h>
3
4 /*
5 3. Write a C program to perform binary search. A binary search search

algorithm finds the position of a target value within a sorted
array. Here's the algorithm:

6
7 Sorted array: L = [1, 3, 4, 6, 8, 9, 11]
8 Target value: X = 4
9 Compare X to 6. X is smaller. Repeat with L = [1, 3, 4].
10 Compare X to 3. X is larger. Repeat with L = [4].
11 Compare X to 4. X equals 4, so the position is returned.
12
13 */
14
15 // low = lowest index to search in arr
16 // high = highest index to search in arr
17 int binary_search(int arr[], int low, int high, int target){
18
19 while (low <= high){
20 int mid = (high + low) / 2;
21

4

22 printf("Running loop. low: %d, mid: %d, high: %d\n", low, mid, high
);

23
24 // if the target is at the mid position
25 if(arr[mid] == target){
26 return mid;
27 }
28
29 // if the target is less than the value at mid
30 if(target < arr[mid])
31 {
32 // move to compare left side of arr
33 high = mid - 1;
34 }
35 else
36 {
37 // move the compare right side of arr
38 low = mid + 1;
39 }
40 }
41 // return -1 to indicate the target value is not found
42 return -1;
43 }
44
45 int main(){
46 int a[] = {1, 4, 6, 8, 9, 11, 13};
47 size_t a_len = sizeof(a) / sizeof(int);
48 int target = 13;
49 int pos_rec = binary_search_recursive(a, 0, a_len-1, target);
50 printf("%d found at position %d\n", target, pos);
51 }

4. Write a C program to perform binary search recursively

1 #include <stdio.h>
2 #include <string.h>
3
4 // 4. Write a C program to perform binary search recursively
5
6 int binary_search_recursive(int arr[], int low, int high, int target){
7 // base case 1. Value is not in arr. low and high have crossed
8 if(low > high){
9 return -1;

5

10 }
11 int mid = (high + low) / 2;
12 // base case 2. target value is stored at mid
13 if(arr[mid] == target){
14 return mid;
15 }
16 // otherwise recurse.
17 // if target is less than value at mid, recurse left
18 if(target < arr[mid]){
19 return binary_search_recursive(arr, low, mid-1, target);
20 }
21 // if target is greater than value at mid, recurse right
22 else
23 {
24 return binary_search_recursive(arr, mid+1, high, target);
25 }
26
27 }
28
29 int main(){
30 int a[] = {1, 4, 6, 8, 9, 11, 13};
31 size_t a_len = sizeof(a) / sizeof(int);
32 int target = 13;
33 int pos_rec = binary_search_recursive(a, 0, a_len-1, target);
34 printf("%d found at position %d using recursion\n", target, pos_rec);
35 }

6

	Mid-semester Review
	Three stages of compilation
	How to read error messages
	Exercises

